8 resultados para data centric research

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Artificial intelligence acquired a lot of baggage since its introduction and in its current incarnation is synonymous with Deep Learning. The sudden availability of data and computing resources has opened the gates to myriads of applications. Not all are created equal though, and problems might arise especially for fields not closely related to the tasks that pertain tech companies that spearheaded DL. The perspective of practitioners seems to be changing, however. Human-Centric AI emerged in the last few years as a new way of thinking DL and AI applications from the ground up, with a special attention at their relationship with humans. The goal is designing a system that can gracefully integrate in already established workflows, as in many real-world scenarios AI may not be good enough to completely replace its humans. Often this replacement may even be unneeded or undesirable. Another important perspective comes from, Andrew Ng, a DL pioneer, who recently started shifting the focus of development from “better models” towards better, and smaller, data. He defined his approach Data-Centric AI. Without downplaying the importance of pushing the state of the art in DL, we must recognize that if the goal is creating a tool for humans to use, more raw performance may not align with more utility for the final user. A Human-Centric approach is compatible with a Data-Centric one, and we find that the two overlap nicely when human expertise is used as the driving force behind data quality. This thesis documents a series of case-studies where these approaches were employed, to different extents, to guide the design and implementation of intelligent systems. We found human expertise proved crucial in improving datasets and models. The last chapter includes a slight deviation, with studies on the pandemic, still preserving the human and data centric perspective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis analyses and examines the relevant developments of EU law since the EU institutions have been granted competence in matters of entry and residence of nationals of third countries within the space of the European Union, as governed by Title IV of the Treaty establishing the European Community (now Title V of the Treaty on the Functioning of the European Union) and by the ensuing norms. Based on these data my research aims to reconstruct the current state of EU legislation in matters of entry and residence of third country nationals in order to establish the extent of the EU’s competence into immigration and asylum, also in relation to the erosion of the Member States’ competence into the same areas. The most significant sign of this evolution is the recognition of the right of third-country nationals who are long-term residents to move and reside within the territory of other Member States. The increased use of the EU’s territory by third country nationals has led to the problem of the evolution of the concept of EU citizenship, and in particular to the most significant content of the question, namely the right to move freely. With regard to this aspect EU citizenship could be free from the requirement of nationality of a Member State, so as to be strictly related to the right of free use of the territory, as established by the internal market. This concept could also include the nationals of third countries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’elaborato ha lo scopo di presentare le nuove opportunità di business offerte dal Web. Il rivoluzionario cambiamento che la pervasività della Rete e tutte le attività correlate stanno portando, ha posto le aziende davanti ad un diverso modo di relazionarsi con i propri consumatori, che sono sempre più informati, consapevoli ed esigenti, e con la concorrenza. La sfida da accettare per rimanere competitivi sul mercato è significativa e il mutamento in rapido sviluppo: gli aspetti che contraddistinguono questo nuovo paradigma digitale sono, infatti, velocità, mutevolezza, ma al tempo stesso misurabilità, ponderabilità, previsione. Grazie agli strumenti tecnologici a disposizione e alle dinamiche proprie dei diversi spazi web (siti, social network, blog, forum) è possibile tracciare più facilmente, rispetto al passato, l’impatto di iniziative, lanci di prodotto, promozioni e pubblicità, misurandone il ritorno sull’investimento, oltre che la percezione dell’utente finale. Un approccio datacentrico al marketing, attraverso analisi di monitoraggio della rete, permette quindi al brand investimenti più mirati e ponderati sulla base di stime e previsioni. Tra le più significative strategie di marketing digitale sono citate: social advertising, keyword advertising, digital PR, social media, email marketing e molte altre. Sono riportate anche due case history: una come ottimo esempio di co-creation in cui il brand ha coinvolto direttamente il pubblico nel processo di produzione del prodotto, affidando ai fan della Pagina Facebook ufficiale la scelta dei gusti degli yogurt da mettere in vendita. La seconda, caso internazionale di lead generation, ha permesso al brand di misurare la conversione dei visitatori del sito (previa compilazione di popin) in reali acquirenti, collegando i dati di traffico del sito a quelli delle vendite. Esempio di come online e offline comunichino strettamente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Riding the wave of recent groundbreaking achievements, artificial intelligence (AI) is currently the buzzword on everybody’s lips and, allowing algorithms to learn from historical data, Machine Learning (ML) emerged as its pinnacle. The multitude of algorithms, each with unique strengths and weaknesses, highlights the absence of a universal solution and poses a challenging optimization problem. In response, automated machine learning (AutoML) navigates vast search spaces within minimal time constraints. By lowering entry barriers, AutoML emerged as promising the democratization of AI, yet facing some challenges. In data-centric AI, the discipline of systematically engineering data used to build an AI system, the challenge of configuring data pipelines is rather simple. We devise a methodology for building effective data pre-processing pipelines in supervised learning as well as a data-centric AutoML solution for unsupervised learning. In human-centric AI, many current AutoML tools were not built around the user but rather around algorithmic ideas, raising ethical and social bias concerns. We contribute by deploying AutoML tools aiming at complementing, instead of replacing, human intelligence. In particular, we provide solutions for single-objective and multi-objective optimization and showcase the challenges and potential of novel interfaces featuring large language models. Finally, there are application areas that rely on numerical simulators, often related to earth observations, they tend to be particularly high-impact and address important challenges such as climate change and crop life cycles. We commit to coupling these physical simulators with (Auto)ML solutions towards a physics-aware AI. Specifically, in precision farming, we design a smart irrigation platform that: allows real-time monitoring of soil moisture, predicts future moisture values, and estimates water demand to schedule the irrigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Early definitions of Smart Building focused almost entirely on the technology aspect and did not suggest user interaction at all. Indeed, today we would attribute it more to the concept of the automated building. In this sense, control of comfort conditions inside buildings is a problem that is being well investigated, since it has a direct effect on users’ productivity and an indirect effect on energy saving. Therefore, from the users’ perspective, a typical environment can be considered comfortable, if it’s capable of providing adequate thermal comfort, visual comfort and indoor air quality conditions and acoustic comfort. In the last years, the scientific community has dealt with many challenges, especially from a technological point of view. For instance, smart sensing devices, the internet, and communication technologies have enabled a new paradigm called Edge computing that brings computation and data storage closer to the location where it is needed, to improve response times and save bandwidth. This has allowed us to improve services, sustainability and decision making. Many solutions have been implemented such as smart classrooms, controlling the thermal condition of the building, monitoring HVAC data for energy-efficient of the campus and so forth. Though these projects provide to the realization of smart campus, a framework for smart campus is yet to be determined. These new technologies have also introduced new research challenges: within this thesis work, some of the principal open challenges will be faced, proposing a new conceptual framework, technologies and tools to move forward the actual implementation of smart campuses. Keeping in mind, several problems known in the literature have been investigated: the occupancy detection, noise monitoring for acoustic comfort, context awareness inside the building, wayfinding indoor, strategic deployment for air quality and books preserving.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation proposes an analysis of the governance of the European scientific research, focusing on the emergence of the Open Science paradigm: a new way of doing science, oriented towards the openness of every phase of the scientific research process, able to take full advantage of the digital ICTs. The emergence of this paradigm is relatively recent, but in the last years it has become increasingly relevant. The European institutions expressed a clear intention to embrace the Open Science paradigm (eg., think about the European Open Science Cloud, EOSC; or the establishment of the Horizon Europe programme). This dissertation provides a conceptual framework for the multiple interventions of the European institutions in the field of Open Science, addressing the major legal challenges of its implementation. The study investigates the notion of Open Science, proposing a definition that takes into account all its dimensions related to the human and fundamental rights framework in which Open Science is grounded. The inquiry addresses the legal challenges related to the openness of research data, in light of the European Open Data framework and the impact of the GDPR on the context of Open Science. The last part of the study is devoted to the infrastructural dimension of the Open Science paradigm, exploring the e-infrastructures. The focus is on a specific type of computational infrastructure: the High Performance Computing (HPC) facility. The adoption of HPC for research is analysed from the European perspective, investigating the EuroHPC project, and the local perspective, proposing the case study of the HPC facility of the University of Luxembourg, the ULHPC. This dissertation intends to underline the relevance of the legal coordination approach, between all actors and phases of the process, in order to develop and implement the Open Science paradigm, adhering to the underlying human and fundamental rights.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The project answers to the following central research question: ‘How would a moral duty of patients to transfer (health) data for the benefit of health care improvement, research, and public health in the eHealth sector sit within the existing confidentiality, privacy, and data protection legislations?’. The improvement of healthcare services, research, and public health relies on patient data, which is why one might raise the question concerning a potential moral responsibility of patients to transfer data concerning health. Such a responsibility logically would have subsequent consequences for care providers concerning the further transferring of health data with other healthcare providers or researchers and other organisations (who also possibly transfer the data further with others and other organisations). Otherwise, the purpose of the patients’ moral duty, i.e. to improve the care system and research, would be undermined. Albeit the arguments that may exist in favour of a moral responsibility of patients to share health-related data, there are also some moral hurdles that come with such a moral responsibility. Furthermore, the existing European and national confidentiality, privacy and data protection legislations appear to hamper such a possible moral duty, and they may need to be reconsidered to unlock the full use of data for healthcare and research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Big data and AI are paving the way to promising scenarios in clinical practice and research. However, the use of such technologies might clash with GDPR requirements. Today, two forces are driving the EU policies in this domain. The first is the necessity to protect individuals’ safety and fundamental rights. The second is to incentivize the deployment of innovative technologies. The first objective is pursued by legislative acts such as the GDPR or the AIA, the second is supported by the new data strategy recently launched by the European Commission. Against this background, the thesis analyses the issue of GDPR compliance when big data and AI systems are implemented in the health domain. The thesis focuses on the use of co-regulatory tools for compliance with the GDPR. This work argues that there are two level of co-regulation in the EU legal system. The first, more general, is the approach pursued by the EU legislator when shaping legislative measures that deal with fast-evolving technologies. The GDPR can be deemed a co-regulatory solution since it mainly introduces general requirements, which implementation shall then be interpretated by the addressee of the law following a risk-based approach. This approach, although useful is costly and sometimes burdensome for organisations. The second co-regulatory level is represented by specific co-regulatory tools, such as code of conduct and certification mechanisms. These tools are meant to guide and support the interpretation effort of the addressee of the law. The thesis argues that the lack of co-regulatory tools which are supposed to implement data protection law in specific situations could be an obstacle to the deployment of innovative solutions in complex scenario such as the health ecosystem. The thesis advances hypothesis on theoretical level about the reasons of such a lack of co-regulatory solutions.