22 resultados para cyber-physical systems

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the development of quantum mechanics it has been natural to analyze the connection between classical and quantum mechanical descriptions of physical systems. In particular one should expect that in some sense when quantum mechanical effects becomes negligible the system will behave like it is dictated by classical mechanics. One famous relation between classical and quantum theory is due to Ehrenfest. This result was later developed and put on firm mathematical foundations by Hepp. He proved that matrix elements of bounded functions of quantum observables between suitable coherents states (that depend on Planck's constant h) converge to classical values evolving according to the expected classical equations when h goes to zero. His results were later generalized by Ginibre and Velo to bosonic systems with infinite degrees of freedom and scattering theory. In this thesis we study the classical limit of Nelson model, that describes non relativistic particles, whose evolution is dictated by Schrödinger equation, interacting with a scalar relativistic field, whose evolution is dictated by Klein-Gordon equation, by means of a Yukawa-type potential. The classical limit is a mean field and weak coupling limit. We proved that the transition amplitude of a creation or annihilation operator, between suitable coherent states, converges in the classical limit to the solution of the system of differential equations that describes the classical evolution of the theory. The quantum evolution operator converges to the evolution operator of fluctuations around the classical solution. Transition amplitudes of normal ordered products of creation and annihilation operators between coherent states converge to suitable products of the classical solutions. Transition amplitudes of normal ordered products of creation and annihilation operators between fixed particle states converge to an average of products of classical solutions, corresponding to different initial conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustained demand for faster,more powerful chips has beenmet by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SOC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MPSOC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NOCS) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the on-chip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation focuses on all of the above points, by describing a NoC architectural implementation called ×pipes; a NoC simulation environment within a cycle-accurate MPSoC emulator called MPARM; a NoC design flow consisting of a front-end tool for optimal NoC instantiation, called SunFloor, and a set of back-end facilities for the study of NoC physical implementations. This dissertation proves the viability of NoCs for current and upcoming designs, by outlining their advantages (alongwith a fewtradeoffs) and by providing a full NoC implementation framework. It also presents some examples of additional extensions of NoCs, allowing e.g. for increased fault tolerance, and outlines where NoCsmay find further application scenarios, such as in stacked chips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales. Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchronization is a key issue in any communication system, but it becomes fundamental in the navigation systems, which are entirely based on the estimation of the time delay of the signals coming from the satellites. Thus, even if synchronization has been a well known topic for many years, the introduction of new modulations and new physical layer techniques in the modern standards makes the traditional synchronization strategies completely ineffective. For this reason, the design of advanced and innovative techniques for synchronization in modern communication systems, like DVB-SH, DVB-T2, DVB-RCS, WiMAX, LTE, and in the modern navigation system, like Galileo, has been the topic of the activity. Recent years have seen the consolidation of two different trends: the introduction of Orthogonal Frequency Division Multiplexing (OFDM) in the communication systems, and of the Binary Offset Carrier (BOC) modulation in the modern Global Navigation Satellite Systems (GNSS). Thus, a particular attention has been given to the investigation of the synchronization algorithms in these areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the outcomes of a Ph.D. course in telecommunications engineering. It is focused on the optimization of the physical layer of digital communication systems and it provides innovations for both multi- and single-carrier systems. For the former type we have first addressed the problem of the capacity in presence of several nuisances. Moreover, we have extended the concept of Single Frequency Network to the satellite scenario, and then we have introduced a novel concept in subcarrier data mapping, resulting in a very low PAPR of the OFDM signal. For single carrier systems we have proposed a method to optimize constellation design in presence of a strong distortion, such as the non linear distortion provided by satellites' on board high power amplifier, then we developed a method to calculate the bit/symbol error rate related to a given constellation, achieving an improved accuracy with respect to the traditional Union Bound with no additional complexity. Finally we have designed a low complexity SNR estimator, which saves one-half of multiplication with respect to the ML estimator, and it has similar estimation accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stabilization of nanoparticles against their irreversible particle aggregation and oxidation reactions. is a requirement for further advancement in nanoparticle science and technology. For this reason the research aim on this topic focuses on the synthesis of various metal nanoparticles protected with monolayers containing different reactive head groups and functional tail groups. In this work cuprous bromide nanocrystals haave been synthetized with a diameter of about 20 nanometers according to a new sybthetic method adding dropwise ascorbic acid to a water solution of lithium bromide and cupric chloride under continuous stirring and nitrogen flux. Butane thiolate Cu protected nanoparticles have been synthetized according to three different syntesys methods. Their morphologies appear related to the physicochemical conditions during the synthesis and to the dispersing medium used to prepare the sample. Synthesis method II allows to obtain stable nanoparticles of 1-2 nm in size both isolated and forming clusters. Nanoparticle cluster formation was enhanced as water was used as dispersing medium probably due to the idrophobic nature of the butanethiolate layers coating the nanoparticle surface. Synthesis methods I and III lead to large unstable spherical nanoparticles with size ranging between 20 to 50 nm. These nanoparticles appeared in the TEM micrograph with the same morphology independently on the dispersing medium used in the sample preparation. The stability and dimensions of the copper nanoparticles appear inversely related. Using the same methods above described for the butanethiolate protected copper nanoparticles 4-methylbenzenethiol protected copper nanoparticles have been prepared. Diffractometric and spectroscopic data reveal that decomposition processes didn’t occur in both the 4-methylbenzenethiol copper protected nanoparticles precipitates from formic acid and from water in a period of time six month long. Se anticarcinogenic effects by multiple mechanisms have been extensively investigated and documented and Se is defined a genuine nutritional cancer-protecting element and a significant protective effect of Se against major forms of cancer. Furthermore phloroglucinol was found to possess cytoprotective effects against oxidative stress, thanks to reactive oxygen species (ROS) which are associated with cells and tissue damages and are the contributing factors for inflammation, aging, cancer, arteriosclerosis, hypertension and diabetes. The goal of our work has been to set up a new method to synthesize in mild conditions amorphous Se nanopaticles surface capped with phloroglucinol, which is used during synthesis as reducing agent to obtain stable Se nanoparticles in ethanol, performing the synergies offered by the specific anticarcinogenic properties of Se and the antioxiding ones of phloroalucinol. We have synthesized selenium nanoparticles protected by phenolic molecules chemically bonded to their surface. The phenol molecules coating the nanoparticles surfaces form low ordered arrays as can be seen from the wider shape of the absorptions in the FT-IR spectrum with respect to those appearing in that of crystalline phenol. On the other hand, metallic nanoparticles with unique optical properties, facile surface chemistry and appropriate size scale are generating much enthusiasm in nanomedicine. In fact Au nanoparticles has immense potential for both cancer diagnosis and therapy. Especially Au nanoparticles efficiently convert the strongly adsorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. According to the about, metal nanoparticles-HA nanocrystals composites should have tremendous potential in novel methods for therapy of cancer. 11 mercaptoundecanoic surface protected Au4Ag1 nanoparticles adsorbed on nanometric apathyte crystals we have successfully prepared like an anticancer nanoparticles deliver system utilizing biomimetic hydroxyapatyte nanocrystals as deliver agents. Furthermore natural chrysotile, formed by densely packed bundles of multiwalled hollow nanotubes, is a mineral very suitable for nanowires preparation when their inner nanometer-sized cavity is filled with a proper material. Bundles of chrysotile nanotubes can then behave as host systems, where their large interchannel separation is actually expected to prevent the interaction between individual guest metallic nanoparticles and act as a confining barrier. Chrysotile nanotubes have been filled with molten metals such as Hg, Pb, Sn, semimetals, Bi, Te, Se, and with semiconductor materials such as InSb, CdSe, GaAs, and InP using both high-pressure techniques and metal-organic chemical vapor deposition. Under hydrothermal conditions chrysotile nanocrystals have been synthesized as a single phase and can be utilized as a very suitable for nanowires preparation filling their inner nanometer-sized cavity with metallic nanoparticles. In this research work we have synthesized and characterized Stoichiometric synthetic chrysotile nanotubes have been partially filled with bi and monometallic highly monodispersed nanoparticles with diameters ranging from 1,7 to 5,5 nm depending on the core composition (Au, Au4Ag1, Au1Ag4, Ag). In the case of 4 methylbenzenethiol protected silver nanoparticles, the filling was carried out by convection and capillarity effect at room temperature and pressure using a suitable organic solvent. We have obtained new interesting nanowires constituted of metallic nanoparticles filled in inorganic nanotubes with a inner cavity of 7 nm and an isolating wall with a thick ranging from 7 to 21 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deal with the design of advanced OFDM systems. Both waveform and receiver design have been treated. The main scope of the Thesis is to study, create, and propose, ideas and novel design solutions able to cope with the weaknesses and crucial aspects of modern OFDM systems. Starting from the the transmitter side, the problem represented by low resilience to non-linear distortion has been assessed. A novel technique that considerably reduces the Peak-to-Average Power Ratio (PAPR) yielding a quasi constant signal envelope in the time domain (PAPR close to 1 dB) has been proposed.The proposed technique, named Rotation Invariant Subcarrier Mapping (RISM),is a novel scheme for subcarriers data mapping,where the symbols belonging to the modulation alphabet are not anchored, but maintain some degrees of freedom. In other words, a bit tuple is not mapped on a single point, rather it is mapped onto a geometrical locus, which is totally or partially rotation invariant. The final positions of the transmitted complex symbols are chosen by an iterative optimization process in order to minimize the PAPR of the resulting OFDM symbol. Numerical results confirm that RISM makes OFDM usable even in severe non-linear channels. Another well known problem which has been tackled is the vulnerability to synchronization errors. Indeed in OFDM system an accurate recovery of carrier frequency and symbol timing is crucial for the proper demodulation of the received packets. In general, timing and frequency synchronization is performed in two separate phases called PRE-FFT and POST-FFT synchronization. Regarding the PRE-FFT phase, a novel joint symbol timing and carrier frequency synchronization algorithm has been presented. The proposed algorithm is characterized by a very low hardware complexity, and, at the same time, it guarantees very good performance in in both AWGN and multipath channels. Regarding the POST-FFT phase, a novel approach for both pilot structure and receiver design has been presented. In particular, a novel pilot pattern has been introduced in order to minimize the occurrence of overlaps between two pattern shifted replicas. This allows to replace conventional pilots with nulls in the frequency domain, introducing the so called Silent Pilots. As a result, the optimal receiver turns out to be very robust against severe Rayleigh fading multipath and characterized by low complexity. Performance of this approach has been analytically and numerically evaluated. Comparing the proposed approach with state of the art alternatives, in both AWGN and multipath fading channels, considerable performance improvements have been obtained. The crucial problem of channel estimation has been thoroughly investigated, with particular emphasis on the decimation of the Channel Impulse Response (CIR) through the selection of the Most Significant Samples (MSSs). In this contest our contribution is twofold, from the theoretical side, we derived lower bounds on the estimation mean-square error (MSE) performance for any MSS selection strategy,from the receiver design we proposed novel MSS selection strategies which have been shown to approach these MSE lower bounds, and outperformed the state-of-the-art alternatives. Finally, the possibility of using of Single Carrier Frequency Division Multiple Access (SC-FDMA) in the Broadband Satellite Return Channel has been assessed. Notably, SC-FDMA is able to improve the physical layer spectral efficiency with respect to single carrier systems, which have been used so far in the Return Channel Satellite (RCS) standards. However, it requires a strict synchronization and it is also sensitive to phase noise of local radio frequency oscillators. For this reason, an effective pilot tone arrangement within the SC-FDMA frame, and a novel Joint Multi-User (JMU) estimation method for the SC-FDMA, has been proposed. As shown by numerical results, the proposed scheme manages to satisfy strict synchronization requirements and to guarantee a proper demodulation of the received signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the outcomes of my Ph.D. course in telecommunications engineering. The focus of my research has been on Global Navigation Satellite Systems (GNSS) and in particular on the design of aiding schemes operating both at position and physical level and the evaluation of their feasibility and advantages. Assistance techniques at the position level are considered to enhance receiver availability in challenging scenarios where satellite visibility is limited. Novel positioning techniques relying on peer-to-peer interaction and exchange of information are thus introduced. More specifically two different techniques are proposed: the Pseudorange Sharing Algorithm (PSA), based on the exchange of GNSS data, that allows to obtain coarse positioning where the user has scarce satellite visibility, and the Hybrid approach, which also permits to improve the accuracy of the positioning solution. At the physical level, aiding schemes are investigated to improve the receiver’s ability to synchronize with satellite signals. An innovative code acquisition strategy for dual-band receivers, the Cross-Band Aiding (CBA) technique, is introduced to speed-up initial synchronization by exploiting the exchange of time references between the two bands. In addition vector configurations for code tracking are analyzed and their feedback generation process thoroughly investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD work was aimed to design, develop, and characterize gelatin-based scaffolds, for the repair of defects in the muscle-skeletal system. Gelatin is a biopolymer widely used for pharmaceutical and medical applications, thanks to its biodegradability and biocompatibility. It is obtained from collagen via thermal denaturation or chemical-physical degradation. Despite its high potential as biomaterial, gelatin exhibits poor mechanical properties and a low resistance in aqueous environment. Crosslinking treatment and enrichment with reinforcement materials are thus required for biomedical applications. In this work, gelatin based scaffolds were prepared following three different strategies: films were prepared through the solvent casting method, electrospinning technique was applied for the preparation of porous mats, and 3D porous scaffolds were prepared through freeze-drying. The results obtained on films put into evidence the influence of pH, crosslinking and reinforcement with montmorillonite (MMT), on the structure, stability and mechanical properties of gelatin and MMT/gelatin composites. The information acquired on the effect of crosslinking in different conditions was utilized to optimize the preparation procedure of electrospun and freeze-dried scaffolds. A successful method was developed to prepare gelatin nanofibrous scaffolds electrospun from acetic acid/water solution and stabilized with a non-toxic crosslinking agent, genipin, able to preserve their original morphology after exposure to water. Moreover, the co-electrospinning technique was used to prepare nanofibrous scaffolds at variable content of gelatin and polylactic acid. Preliminary in vitro tests indicated that the scaffolds are suitable for cartilage tissue engineering, and that their potential applications can be extended to cartilage-bone interface tissue engineering. Finally, 3D porous gelatin scaffolds, enriched with calcium phosphate, were prepared with the freeze-drying method. The results indicated that the crystallinity of the inorganic phase influences porosity, interconnectivity and mechanical properties. Preliminary in vitro tests show good osteoblast response in terms of proliferation and adhesion on all the scaffolds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A control-oriented model of a Dual Clutch Transmission was developed for real-time Hardware In the Loop (HIL) applications, to support model-based development of the DCT controller. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, that was then implemented in a HIL system and connected to the TCU (Transmission Control Unit). Several tests have been performed: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. The first intensive use of the HIL application led to the validation of the new safety strategies implemented inside the TCU software. A test automation procedure has been developed to permit the execution of a pattern of tests without the interaction of the user; fully repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor nanowires (NWs) are one- or quasi one-dimensional systems whose physical properties are unique as compared to bulk materials because of their nanoscaled sizes. They bring together quantum world and semiconductor devices. NWs-based technologies may achieve an impact comparable to that of current microelectronic devices if new challenges will be faced. This thesis primarily focuses on two different, cutting-edge aspects of research over semiconductor NW arrays as pivotal components of NW-based devices. The first part deals with the characterization of electrically active defects in NWs. It has been elaborated the set-up of a general procedure which enables to employ Deep Level Transient Spectroscopy (DLTS) to probe NW arrays’ defects. This procedure has been applied to perform the characterization of a specific system, i.e. Reactive Ion Etched (RIE) silicon NW arrays-based Schottky barrier diodes. This study has allowed to shed light over how and if growth conditions introduce defects in RIE processed silicon NWs. The second part of this thesis concerns the bowing induced by electron beam and the subsequent clustering of gallium arsenide NWs. After a justified rejection of the mechanisms previously reported in literature, an original interpretation of the electron beam induced bending has been illustrated. Moreover, this thesis has successfully interpreted the formation of NW clusters in the framework of the lateral collapse of fibrillar structures. These latter are both idealized models and actual artificial structures used to study and to mimic the adhesion properties of natural surfaces in lizards and insects (Gecko effect). Our conclusion are that mechanical and surface properties of the NWs, together with the geometry of the NW arrays, play a key role in their post-growth alignment. The same parameters open, then, to the benign possibility of locally engineering NW arrays in micro- and macro-templates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the several issues faced in the past, the evolutionary trend of silicon has kept its constant pace. Today an ever increasing number of cores is integrated onto the same die. Unfortunately, the extraordinary performance achievable by the many-core paradigm is limited by several factors. Memory bandwidth limitation, combined with inefficient synchronization mechanisms, can severely overcome the potential computation capabilities. Moreover, the huge HW/SW design space requires accurate and flexible tools to perform architectural explorations and validation of design choices. In this thesis we focus on the aforementioned aspects: a flexible and accurate Virtual Platform has been developed, targeting a reference many-core architecture. Such tool has been used to perform architectural explorations, focusing on instruction caching architecture and hybrid HW/SW synchronization mechanism. Beside architectural implications, another issue of embedded systems is considered: energy efficiency. Near Threshold Computing is a key research area in the Ultra-Low-Power domain, as it promises a tenfold improvement in energy efficiency compared to super-threshold operation and it mitigates thermal bottlenecks. The physical implications of modern deep sub-micron technology are severely limiting performance and reliability of modern designs. Reliability becomes a major obstacle when operating in NTC, especially memory operation becomes unreliable and can compromise system correctness. In the present work a novel hybrid memory architecture is devised to overcome reliability issues and at the same time improve energy efficiency by means of aggressive voltage scaling when allowed by workload requirements. Variability is another great drawback of near-threshold operation. The greatly increased sensitivity to threshold voltage variations in today a major concern for electronic devices. We introduce a variation-tolerant extension of the baseline many-core architecture. By means of micro-architectural knobs and a lightweight runtime control unit, the baseline architecture becomes dynamically tolerant to variations.