2 resultados para critical frequency

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy released during a seismic crisis in volcanic areas is strictly related to the physical processes in the volcanic structure. In particular Long Period seismicity, that seems to be related to the oscillation of a fluid-filled crack (Chouet , 1996, Chouet, 2003, McNutt, 2005), can precedes or accompanies an eruption. The present doctoral thesis is focused on the study of the LP seismicity recorded in the Campi Flegrei volcano (Campania, Italy) during the October 2006 crisis. Campi Flegrei Caldera is an active caldera; the combination of an active magmatic system and a dense populated area make the Campi Flegrei a critical volcano. The source dynamic of LP seismicity is thought to be very different from the other kind of seismicity ( Tectonic or Volcano Tectonic): it’s characterized by a time sustained source and a low content in frequency. This features implies that the duration–magnitude, that is commonly used for VT events and sometimes for LPs as well, is unadapted for LP magnitude evaluation. The main goal of this doctoral work was to develop a method for the determination of the magnitude for the LP seismicity; it’s based on the comparison of the energy of VT event and LP event, linking the energy to the VT moment magnitude. So the magnitude of the LP event would be the moment magnitude of a VT event with the same energy of the LP. We applied this method to the LP data-set recorded at Campi Flegrei caldera in 2006, to an LP data-set of Colima volcano recorded in 2005 – 2006 and for an event recorded at Etna volcano. Experimenting this method to lots of waveforms recorded at different volcanoes we tested its easy applicability and consequently its usefulness in the routinely and in the quasi-real time work of a volcanological observatory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous and swift progression of both wireless and wired communication technologies in today's world owes its success to the foundational systems established earlier. These systems serve as the building blocks that enable the enhancement of services to cater to evolving requirements. Studying the vulnerabilities of previously designed systems and their current usage leads to the development of new communication technologies replacing the old ones such as GSM-R in the railway field. The current industrial research has a specific focus on finding an appropriate telecommunication solution for railway communications that will replace the GSM-R standard which will be switched off in the next years. Various standardization organizations are currently exploring and designing a radiofrequency technology based standard solution to serve railway communications in the form of FRMCS (Future Railway Mobile Communication System) to substitute the current GSM-R. Bearing on this topic, the primary strategic objective of the research is to assess the feasibility to leverage on the current public network technologies such as LTE to cater to mission and safety critical communication for low density lines. The research aims to identify the constraints, define a service level agreement with telecom operators, and establish the necessary implementations to make the system as reliable as possible over an open and public network, while considering safety and cybersecurity aspects. The LTE infrastructure would be utilized to transmit the vital data for the communication of a railway system and to gather and transmit all the field measurements to the control room for maintenance purposes. Given the significance of maintenance activities in the railway sector, the ongoing research includes the implementation of a machine learning algorithm to detect railway equipment faults, reducing time and human analysis errors due to the large volume of measurements from the field.