4 resultados para creative drive
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
With the business environments no longer confined to geographical borders, the new wave of digital technologies has given organizations an enormous opportunity to bring together their distributed workforce and develop the ability to work together despite being apart (Prasad & Akhilesh, 2002). resupposing creativity to be a social process, the way that this phenomenon occurs when the configuration of the team is substantially modified will be questioned. Very little is known about the impact of interpersonal relationships in the creativity (Kurtzberg & Amabile, 2001). In order to analyse the ways in which the creative process may be developed, we ought to be taken into consideration the fact that participants are dealing with a quite an atypical situation. Firstly, in these cases socialization takes place amongst individuals belonging to a geographically dispersed workplace, where interpersonal relationships are mediated by the computer, and where trust must be developed among persons who have never met one another. Participants not only have multiple addresses and locations, but above all different nationalities, and different cultures, attitudes, thoughts, and working patterns, and languages. Therefore, the central research question of this thesis is as follows: “How does the creative process unfold in globally distributed teams?” With a qualitative approach, we used the case study of the Business Unit of Volvo 3P, an arm of Volvo Group. Throughout this research, we interviewed seven teams engaged in the development of a new product in the chassis and cab areas, for the brands Volvo and Renault Trucks, teams that were geographically distributed in Brazil, Sweden, France and India. Our research suggests that corporate values, alongside with intrinsic motivation and task which lay down the necessary foundations for the development of the creative process in GDT.
Resumo:
Biomarkers are biological indicators of human health conditions. Their ultra-sensitive quantification is of cardinal importance in clinical monitoring and early disease diagnosis. Biosensors are some worldwide simple and easy-to-use analytical devices as a matter of fact, biosensors using electrochemiluminescence (ECL) are one of the most promising biosensors that needs an ever-increasing sensitivity for improving its clinical effectiveness. The principal aspiration of this project is the investigation of the ECL generation mechanisms for enhancing the ECL intensity and the development of an ultrasensitive sensor, the use of metal-oxide materials (Mox) and the substitution of metal-free dyes. Novel dyes such as BODIPY, TADF are used to improve the sensitivity of ECL techniques thanks to their advantageous and tunable properties, enhancing the signal and also the ECL efficiency. Additionally, the use of Mox could be beneficial for the investigation of two different ECL mechanisms, which occur simultaneously. In this thesis, the investigation of size and distance effects on electrochemical (EC) mechanisms was carried out through the innovative combination of a standard detection system using different size of micromagnetic beads (MBs). That allowed the discovery of an unexpected and highly efficient mechanistic path for electrochemical generation at small distances from the electrode’s surface. The smallest MBs (0.1μm) demostrate an enhancement of electrochemical signal than the bigger one (2.8μm) until 4 times of magnitude. Finally, a novel ultrasensitive sensor, based on the coreactant-luminophores mechanism, was developed for the determination of whole viral genome specific for cardiac HBV and COVID-19 virus. In conclusion, the ECL and the use of EC techniques (such as amperometry), improved the understanding of mechanisms responsible for the ECL/EC signal led to a great enhancement in the signal.
Resumo:
Creativity seems mysterious; when we experience a creative spark, it is difficult to explain how we got that idea, and we often recall notions like ``inspiration" and ``intuition" when we try to explain the phenomenon. The fact that we are clueless about how a creative idea manifests itself does not necessarily imply that a scientific explanation cannot exist. We are unaware of how we perform certain tasks, such as biking or language understanding, but we have more and more computational techniques that can replicate and hopefully explain such activities. We should understand that every creative act is a fruit of experience, society, and culture. Nothing comes from nothing. Novel ideas are never utterly new; they stem from representations that are already in mind. Creativity involves establishing new relations between pieces of information we had already: then, the greater the knowledge, the greater the possibility of finding uncommon connections, and the more the potential to be creative. In this vein, a beneficial approach to a better understanding of creativity must include computational or mechanistic accounts of such inner procedures and the formation of the knowledge that enables such connections. That is the aim of Computational Creativity: to develop computational systems for emulating and studying creativity. Hence, this dissertation focuses on these two related research areas: discussing computational mechanisms to generate creative artifacts and describing some implicit cognitive processes that can form the basis for creative thoughts.