3 resultados para cost of capital estimation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis focuses on the limits that may prevent an entrepreneur from maximizing her value, and the benefits of diversification in reducing her cost of capital. After reviewing all relevant literature dealing with the differences between traditional corporate finance and entrepreneurial finance, we focus on the biases occurring when traditional finance techniques are applied to the entrepreneurial context. In particular, using the portfolio theory framework, we determine the degree of under-diversification of entrepreneurs. Borrowing the methodology developed by Kerins et al. (2004), we test a model for the cost of capital according to the firms' industry and the entrepreneur's wealth commitment to the firm. This model takes three market inputs (standard deviation of market returns, expected return of the market, and risk-free rate), and two firm-specific inputs (standard deviation of the firm returns and correlation between firm and market returns) as parameters, and returns an appropriate cost of capital as an output. We determine the expected market return and the risk-free rate according to the huge literature on the market risk premium. As for the market return volatility, it is estimated considering a GARCH specification for the market index returns. Furthermore, we assume that the firm-specific inputs can be obtained considering new-listed firms similar in risk to the firm we are evaluating. After we form a database including all the data needed for our analysis, we perform an empirical investigation to understand how much of the firm's total risk depends on market risk, and which explanatory variables can explain it. Our results show that cost of capital declines as the level of entrepreneur's commitment decreases. Therefore, maximizing the value for the entrepreneur depends on the fraction of entrepreneur's wealth invested in the firm and the fraction she sells to outside investors. These results are interesting both for entrepreneurs and policy makers: the former can benefit from an unbiased model for their valuation; the latter can obtain some guidelines to overcome the recent financial market crisis.
Resumo:
The thesis main topic is the conflict between disclosure in financial markets and the need for confidentiality of the firm. After a recognition of the major dynamics of information production and dissemination in the stock market, the analysis moves to the interactions between the information that a firm is tipically interested in keeping confidential, such as trade secrets or the data usually covered by patent protection, and the countervailing demand for disclosure arising from finacial markets. The analysis demonstrates that despite the seeming divergence between informational contents tipically disclosed to investors and information usually covered by intellectual property protection, the overlapping areas are nonetheless wide and the conflict between transparency in financial markets and the firm’s need for confidentiality arises frequently and sistematically. Indeed, the company’s disclosure policy is based on a continuous trade-off between the costs and the benefits related to the public dissemination of information. Such costs are mainly represented by the competitive harm caused by competitors’ access to sensitive data, while the benefits mainly refer to the lower cost of capital that the firm obtains as a consequence of more disclosure. Secrecy shields the value of costly produced information against third parties’ free riding and constitutes therefore a means to protect the firm’s incentives toward the production of new information and especially toward technological and business innovation. Excessively demanding standards of transparency in financial markets might hinder such set of incentives and thus jeopardize the dynamics of innovation production. Within Italian securities regulation, there are two sets of rules mostly relevant with respect to such an issue: the first one is the rule that mandates issuers to promptly disclose all price-sensitive information to the market on an ongoing basis; the second one is the duty to disclose in the prospectus all the information “necessary to enable investors to make an informed assessment” of the issuers’ financial and economic perspectives. Both rules impose high disclosure standards and have potentially unlimited scope. Yet, they have safe harbours aimed at protecting the issuer need for confidentiality. Despite the structural incompatibility between public dissemination of information and the firm’s need to keep certain data confidential, there are certain ways to convey information to the market while preserving at the same time the firm’s need for confidentality. Such means are insider trading and selective disclosure: both are based on mechanics whereby the process of price reaction to the new information takes place without any corresponding activity of public release of data. Therefore, they offer a solution to the conflict between disclosure and the need for confidentiality that enhances market efficiency and preserves at the same time the private set of incentives toward innovation.
Resumo:
Asset Management (AM) is a set of procedures operable at the strategic-tacticaloperational level, for the management of the physical asset’s performance, associated risks and costs within its whole life-cycle. AM combines the engineering, managerial and informatics points of view. In addition to internal drivers, AM is driven by the demands of customers (social pull) and regulators (environmental mandates and economic considerations). AM can follow either a top-down or a bottom-up approach. Considering rehabilitation planning at the bottom-up level, the main issue would be to rehabilitate the right pipe at the right time with the right technique. Finding the right pipe may be possible and practicable, but determining the timeliness of the rehabilitation and the choice of the techniques adopted to rehabilitate is a bit abstruse. It is a truism that rehabilitating an asset too early is unwise, just as doing it late may have entailed extra expenses en route, in addition to the cost of the exercise of rehabilitation per se. One is confronted with a typical ‘Hamlet-isque dilemma’ – ‘to repair or not to repair’; or put in another way, ‘to replace or not to replace’. The decision in this case is governed by three factors, not necessarily interrelated – quality of customer service, costs and budget in the life cycle of the asset in question. The goal of replacement planning is to find the juncture in the asset’s life cycle where the cost of replacement is balanced by the rising maintenance costs and the declining level of service. System maintenance aims at improving performance and maintaining the asset in good working condition for as long as possible. Effective planning is used to target maintenance activities to meet these goals and minimize costly exigencies. The main objective of this dissertation is to develop a process-model for asset replacement planning. The aim of the model is to determine the optimal pipe replacement year by comparing, temporally, the annual operating and maintenance costs of the existing asset and the annuity of the investment in a new equivalent pipe, at the best market price. It is proposed that risk cost provide an appropriate framework to decide the balance between investment for replacing or operational expenditures for maintaining an asset. The model describes a practical approach to estimate when an asset should be replaced. A comprehensive list of criteria to be considered is outlined, the main criteria being a visà- vis between maintenance and replacement expenditures. The costs to maintain the assets should be described by a cost function related to the asset type, the risks to the safety of people and property owing to declining condition of asset, and the predicted frequency of failures. The cost functions reflect the condition of the existing asset at the time the decision to maintain or replace is taken: age, level of deterioration, risk of failure. The process model is applied in the wastewater network of Oslo, the capital city of Norway, and uses available real-world information to forecast life-cycle costs of maintenance and rehabilitation strategies and support infrastructure management decisions. The case study provides an insight into the various definitions of ‘asset lifetime’ – service life, economic life and physical life. The results recommend that one common value for lifetime should not be applied to the all the pipelines in the stock for investment planning in the long-term period; rather it would be wiser to define different values for different cohorts of pipelines to reduce the uncertainties associated with generalisations for simplification. It is envisaged that more criteria the municipality is able to include, to estimate maintenance costs for the existing assets, the more precise will the estimation of the expected service life be. The ability to include social costs enables to compute the asset life, not only based on its physical characterisation, but also on the sensitivity of network areas to social impact of failures. The type of economic analysis is very sensitive to model parameters that are difficult to determine accurately. The main value of this approach is the effort to demonstrate that it is possible to include, in decision-making, factors as the cost of the risk associated with a decline in level of performance, the level of this deterioration and the asset’s depreciation rate, without looking at age as the sole criterion for making decisions regarding replacements.