22 resultados para control of uncertain nonlinear systems
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.
Resumo:
Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems.
Resumo:
In the last decades, we saw a soaring interest in autonomous robots boosted not only by academia and industry, but also by the ever in- creasing demand from civil users. As a matter of fact, autonomous robots are fast spreading in all aspects of human life, we can see them clean houses, navigate through city traffic, or harvest fruits and vegetables. Almost all commercial drones already exhibit unprecedented and sophisticated skills which makes them suitable for these applications, such as obstacle avoidance, simultaneous localisation and mapping, path planning, visual-inertial odometry, and object tracking. The major limitations of such robotic platforms lie in the limited payload that can carry, in their costs, and in the limited autonomy due to finite battery capability. For this reason researchers start to develop new algorithms able to run even on resource constrained platforms both in terms of computation capabilities and limited types of endowed sensors, focusing especially on very cheap sensors and hardware. The possibility to use a limited number of sensors allowed to scale a lot the UAVs size, while the implementation of new efficient algorithms, performing the same task in lower time, allows for lower autonomy. However, the developed robots are not mature enough to completely operate autonomously without human supervision due to still too big dimensions (especially for aerial vehicles), which make these platforms unsafe for humans, and the high probability of numerical, and decision, errors that robots may make. In this perspective, this thesis aims to review and improve the current state-of-the-art solutions for autonomous navigation from a purely practical point of view. In particular, we deeply focused on the problems of robot control, trajectory planning, environments exploration, and obstacle avoidance.
Resumo:
The topic of this thesis is the feedback stabilization of the attitude of magnetically actuated spacecraft. The use of magnetic coils is an attractive solution for the generation of control torques on small satellites flying inclined low Earth orbits, since magnetic control systems are characterized by reduced weight and cost, higher reliability, and require less power with respect to other kinds of actuators. At the same time, the possibility of smooth modulation of control torques reduces coupling of the attitude control system with flexible modes, thus preserving pointing precision with respect to the case when pulse-modulated thrusters are used. The principle based on the interaction between the Earth's magnetic field and the magnetic field generated by the set of coils introduces an inherent nonlinearity, because control torques can be delivered only in a plane that is orthogonal to the direction of the geomagnetic field vector. In other words, the system is underactuated, because the rotational degrees of freedom of the spacecraft, modeled as a rigid body, exceed the number of independent control actions. The solution of the control issue for underactuated spacecraft is also interesting in the case of actuator failure, e.g. after the loss of a reaction-wheel in a three-axes stabilized spacecraft with no redundancy. The application of well known control strategies is no longer possible in this case for both regulation and tracking, so that new methods have been suggested for tackling this particular problem. The main contribution of this thesis is to propose continuous time-varying controllers that globally stabilize the attitude of a spacecraft, when magneto-torquers alone are used and when a momentum-wheel supports magnetic control in order to overcome the inherent underactuation. A kinematic maneuver planning scheme, stability analyses, and detailed simulation results are also provided, with new theoretical developments and particular attention toward application considerations.
Resumo:
In this thesis, the industrial application of control a Permanent Magnet Synchronous Motor in a sensorless configuration has been faced, and in particular the task of estimating the unknown “parameters” necessary for the application of standard motor control algorithms. In literature several techniques have been proposed to cope with this task, among them the technique based on model-based nonlinear observer has been followed. The hypothesis of neglecting the mechanical dynamics from the motor model has been applied due to practical and physical considerations, therefore only the electromagnetic dynamics has been used for the observers design. First observer proposed is based on stator currents and Stator Flux dynamics described in a generic rotating reference frame. Stator flux dynamics are known apart their initial conditions which are estimated, with speed that is also unknown, through the use of the Adaptive Theory. The second observer proposed is based on stator currents and Rotor Flux dynamics described in a self-aligning reference frame. Rotor flux dynamics are described in the stationary reference frame exploiting polar coordinates instead of classical Cartesian coordinates, by means the estimation of amplitude and speed of the rotor flux. The stability proof is derived in a Singular Perturbation Framework, which allows for the use the current estimation errors as a measure of rotor flux estimation errors. The stability properties has been derived using a specific theory for systems with time scale separation, which guarantees a semi-global practical stability. For the two observer ideal simulations and real simulations have been performed to prove the effectiveness of the observers proposed, real simulations on which the effects of the Inverter nonlinearities have been introduced, showing the already known problems of the model-based observers for low speed applications.
Resumo:
The use of tendons for the transmission of the forces and the movements in robotic devices has been investigated from several researchers all over the world. The interest in this kind of actuation modality is based on the possibility of optimizing the position of the actuators with respect to the moving part of the robot, in the reduced weight, high reliability, simplicity in the mechanic design and, finally, in the reduced cost of the resulting kinematic chain. After a brief discussion about the benefits that the use of tendons can introduce in the motion control of a robotic device, the design and control aspects of the UB Hand 3 anthropomorphic robotic hand are presented. In particular, the tendon-sheaths transmission system adopted in the UB Hand 3 is analyzed and the problem of force control and friction compensation is taken into account. The implementation of a tendon based antagonistic actuated robotic arm is then investigated. With this kind of actuation modality, and by using transmission elements with nonlinear force/compression characteristic, it is possible to achieve simultaneous stiffness and position control, improving in this way the safety of the device during the operation in unknown environments and in the case of interaction with other robots or with humans. The problem of modeling and control of this type of robotic devices is then considered and the stability analysis of proposed controller is reported. At the end, some tools for the realtime simulation of dynamic systems are presented. This realtime simulation environment has been developed with the aim of improving the reliability of the realtime control applications both for rapid prototyping of controllers and as teaching tools for the automatic control courses.
Resumo:
Synthetic biology is a young field of applicative research aiming to design and build up artificial biological devices, useful for human applications. How synthetic biology emerged in past years and how the development of the Registry of Standard Biological Parts aimed to introduce one practical starting solution to apply the basics of engineering to molecular biology is presented in chapter 1 in the thesis The same chapter recalls how biological parts can make up a genetic program, the molecular cloning tecnique useful for this purpose, and an overview of the mathematical modeling adopted to describe gene circuit behavior. Although the design of gene circuits has become feasible the increasing complexity of gene networks asks for a rational approach to design gene circuits. A bottom-up approach was proposed, suggesting that the behavior of a complicated system can be predicted from the features of its parts. The option to use modular parts in large-scale networks will be facilitated by a detailed and shared characterization of their functional properties. Such a prediction, requires well-characterized mathematical models of the parts and of how they behave when assembled together. In chapter 2, the feasibility of the bottom-up approach in the design of a synthetic program in Escherichia coli bacterial cells is described. The rational design of gene networks is however far from being established. The synthetic biology approach can used the mathematical formalism to identify biological information not assessable with experimental measurements. In this context, chapter 3 describes the design of a synthetic sensor for identifying molecules of interest inside eukaryotic cells. The Registry of Standard parts collects standard and modular biological parts. To spread the use of BioBricks the iGEM competition was started. The ICM Laboratory, where Francesca Ceroni completed her Ph.D, partecipated with teams of students and Chapter 4 summarizes the projects developed.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.
Resumo:
Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device. In motion control the position, velocity, force, pressure, etc., profiles are designed in such a way that the different mechanical parts work as an harmonious whole in which a perfect synchronization must be achieved. The real-time exchange of information in the distributed system that is nowadays an industrial plant plays an important role in order to achieve always better performance, better effectiveness and better safety. The network for connecting field devices such as sensors, actuators, field controllers such as PLCs, regulators, drive controller etc., and man-machine interfaces is commonly called fieldbus. Since the motion transmission is now task of the communication system, and not more of kinematic chains as in the past, the communication protocol must assure that the desired profiles, and their properties, are correctly transmitted to the axes then reproduced or else the synchronization among the different parts is lost with all the resulting consequences. In this thesis, the problem of trajectory reconstruction in the case of an event-triggered communication system is faced. The most important feature that a real-time communication system must have is the preservation of the following temporal and spatial properties: absolute temporal consistency, relative temporal consistency, spatial consistency. Starting from the basic system composed by one master and one slave and passing through systems made up by many slaves and one master or many masters and one slave, the problems in the profile reconstruction and temporal properties preservation, and subsequently the synchronization of different profiles in network adopting an event-triggered communication system, have been shown. These networks are characterized by the fact that a common knowledge of the global time is not available. Therefore they are non-deterministic networks. Each topology is analyzed and the proposed solution based on phase-locked loops adopted for the basic master-slave case has been improved to face with the other configurations.
Resumo:
This thesis gathers the work carried out by the author in the last three years of research and it concerns the study and implementation of algorithms to coordinate and control a swarm of mobile robots moving in unknown environments. In particular, the author's attention is focused on two different approaches in order to solve two different problems. The first algorithm considered in this work deals with the possibility of decomposing a main complex task in many simple subtasks by exploiting the decentralized implementation of the so called \emph{Null Space Behavioral} paradigm. This approach to the problem of merging different subtasks with assigned priority is slightly modified in order to handle critical situations that can be detected when robots are moving through an unknown environment. In fact, issues can occur when one or more robots got stuck in local minima: a smart strategy to avoid deadlock situations is provided by the author and the algorithm is validated by simulative analysis. The second problem deals with the use of concepts borrowed from \emph{graph theory} to control a group differential wheel robots by exploiting the Laplacian solution of the consensus problem. Constraints on the swarm communication topology have been introduced by the use of a range and bearing platform developed at the Distributed Intelligent Systems and Algorithms Laboratory (DISAL), EPFL (Lausanne, CH) where part of author's work has been carried out. The control algorithm is validated by demonstration and simulation analysis and, later, is performed by a team of four robots engaged in a formation mission. To conclude, the capabilities of the algorithm based on the local solution of the consensus problem for differential wheel robots are demonstrated with an application scenario, where nine robots are engaged in a hunting task.
Resumo:
The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.
Resumo:
Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.
Resumo:
This thesis presents some different techniques designed to drive a swarm of robots in an a-priori unknown environment in order to move the group from a starting area to a final one avoiding obstacles. The presented techniques are based on two different theories used alone or in combination: Swarm Intelligence (SI) and Graph Theory. Both theories are based on the study of interactions between different entities (also called agents or units) in Multi- Agent Systems (MAS). The first one belongs to the Artificial Intelligence context and the second one to the Distributed Systems context. These theories, each one from its own point of view, exploit the emergent behaviour that comes from the interactive work of the entities, in order to achieve a common goal. The features of flexibility and adaptability of the swarm have been exploited with the aim to overcome and to minimize difficulties and problems that can affect one or more units of the group, having minimal impact to the whole group and to the common main target. Another aim of this work is to show the importance of the information shared between the units of the group, such as the communication topology, because it helps to maintain the environmental information, detected by each single agent, updated among the swarm. Swarm Intelligence has been applied to the presented technique, through the Particle Swarm Optimization algorithm (PSO), taking advantage of its features as a navigation system. The Graph Theory has been applied by exploiting Consensus and the application of the agreement protocol with the aim to maintain the units in a desired and controlled formation. This approach has been followed in order to conserve the power of PSO and to control part of its random behaviour with a distributed control algorithm like Consensus.
Resumo:
The application of dexterous robotic hands out of research laboratories has been limited by the intrinsic complexity that these devices present. This is directly reflected as an economically unreasonable cost and a low overall reliability. Within the research reported in this thesis it is shown how the problem of complexity in the design of robotic hands can be tackled, taking advantage of modern technologies (i.e. rapid prototyping), leading to innovative concepts for the design of the mechanical structure, the actuation and sensory systems. The solutions adopted drastically reduce the prototyping and production costs and increase the reliability, reducing the number of parts required and averaging their single reliability factors. In order to get guidelines for the design process, the problem of robotic grasp and manipulation by a dual arm/hand system has been reviewed. In this way, the requirements that should be fulfilled at hardware level to guarantee successful execution of the task has been highlighted. The contribution of this research from the manipulation planning side focuses on the redundancy resolution that arise in the execution of the task in a dexterous arm/hand system. In literature the problem of coordination of arm and hand during manipulation of an object has been widely analyzed in theory but often experimentally demonstrated in simplified robotic setup. Our aim is to cover the lack in the study of this topic and experimentally evaluate it in a complex system as a anthropomorphic arm hand system.