5 resultados para contexte de valorisation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last half-century has seen a continuing population and consumption growth, increasing the competition for land, water and energy. The solution can be found in the new sustainability theories, such as the industrial symbiosis and the zero waste objective. Reducing, reusing and recycling are challenges that the whole world have to consider. This is especially important for organic waste, whose reusing gives interesting results in terms of energy release. Before reusing, organic waste needs a deeper characterization. The non-destructive and non-invasive features of both Nuclear Magnetic Resonance (NMR) relaxometry and imaging (MRI) make them optimal candidates to reach such characterization. In this research, NMR techniques demonstrated to be innovative technologies, but an important work on the hardware and software of the NMR LAGIRN laboratory was initially done, creating new experimental procedures to analyse organic waste samples. The first results came from soil-organic matter interactions. Remediated soils properties were described in function of the organic carbon content, proving the importance of limiting the addition of further organic matter to not inhibit soil processes as nutrients transport. Moreover NMR relaxation times and the signal amplitude of a compost sample, over time, showed that the organic matter degradation of compost is a complex process that involves a number of degradation kinetics, as a function of the mix of waste. Local degradation processes were studied with enhanced quantitative relaxation technique that combines NMR and MRI. The development of this research has finally led to the study of waste before it becomes waste. Since a lot of food is lost when it is still edible, new NMR experiments studied the efficiency of conservation and valorisation processes: apple dehydration, meat preservation and bio-oils production. All these results proved the readiness of NMR for quality controls on a huge kind of organic residues and waste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waste management worldwide has received increasing attention from global policies in recent years. In particular, agro-industrial streams represent a global concern due to the huge volumes generated and a high number of residues, which produce an environmental and economic impact on the ecosystem. The use of biotechnological approaches to treat these streams could allow the production of desirable by-products to be reinjected into the production cycle through sustainable processes. Purple phototrophic bacteria (PPB) are targeted as microorganisms capable to reduce the pressure of agro-industrial streams on environmental issues, due to their metabolic versatility (autotrophic and/or heterotrophic growth under different conditions). This Ph.D. research project aims to assess the effectiveness of PPB cultivation for industrial streams valorisation in the applications of biogas desulfurization and microbial protein production. For these purposes, the first part of the present work is dedicated to the cultivation of purple sulfur bacteria (PSB) for biogas streams upgrading, cleaning biogas from sulfur compounds (H2S), and producing elemental sulfur (S0), potentially suitable as a slow-release fertilizer. The second part of the thesis, instead, sees the application of purple non-sulfur bacteria (PNSB) on streams rich in organics, such as molasses, generating biomass with high content of proteins and pigments, useful as supplements in animal feed. The assessment of the main metabolic mechanisms involved in the two processes is evaluated at a laboratory scale using flasks and a photobioreactor, to define the consumption of substrates and the accumulation of products both in the autotrophic (on biogas) and in heterotrophic grow (on molasses). In conclusion, the effectiveness of processes employing PPB for a sustainable valorisation of several agro-industrial streams has been proved promising, using actual residues, and coupling their treatments with the production of added-value by-products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le terme Secunda désigne la deuxième colonne de la synopse hexaplaire d’Origène. Cette synopse comportait six colonnes, d’où le nom Hexapla utilisé pour la désigner : la première contenait le texte hébreu original de l’Ancien Testament, la deuxième (Secunda) sa transcription phonétique en caractères grecs, les quatre autres les différentes traductions grecques de la Bible. La présence de graphèmes de vocaliques grecs dans la Secunda permet de mener une étude grammaticale complète de cette source, d’un point de vue phonétique et morphologique. Il manque encore actuellement une recherche qui développe le rapport entre la tradition hébraïque de la Secunda, telle qu’elle ressort de la transcription, et les autres traditions hébraïques attestées : celles sans graphèmes vocaliques (c’est-à-dire la tradition samaritaine et le corpus qumranien) et les traditions plus tardives et vocalisées pendant la période médiévale (les traditions massorétique tibérienne, babylonienne et palestinienne). Ce dernier point est précisément l’objet de cette thèse, qui vise à mieux comprendre le statut de l’hébreu de la Secunda, ses relations avec les autres traditions hébraïques et sa place dans l’histoire de la langue. Cette question est abordée à travers différentes étapes : en partant d’une étude phonétique et morphologique de la langue hébraïque de la colonne, on arrive à une hypothèse de datation qui permet une comparaison directe entre l’hébreu hexaplaire et les autres traditions mentionnées ci-dessus. La comparaison entre la Secunda et les autres traditions est cruciale pour situer correctement la Secunda dans l’histoire de la langue hébraïque : au niveau synchronique, elle permet de mettre en évidence ses éléments dialectaux, documentés dans les transcriptions de la Secunda et dans les traditions de la même époque ; au niveau diachronique, elle fournit des terminus ante ou post quem pour des phénomènes bien attestés dans les traditions tardives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochar is a carbonaceous material produced through pyrolysis of biomass. One promising application of biochar is phosphorus recovery from wastewater. Phosphorus is a vital nutrient for plant growth, but its use in fertilizers often leads to runoff or leaching. Wastewater treatment plants discharge large amounts of phosphorus-rich wastewater, contributing to eutrophication and ecological harm. Biochar can sorb phosphorus, retaining it in solid form. In this thesis, two composites made of biomass and dolomite or shells exhibited superior phosphate sorption compared to biochar alone, reaching up to 100% sorption. Biochar also finds use in soil remediation, specifically in cleaning up contaminated soil. Polycyclic aromatic hydrocarbons (PAHs), which can be carcinogenic and toxic, can be present in soil. Biochar adsorb PAHs, preventing their leakage or bioaccumulation. Hetero-PAHs, a subclass of PAHs with nitrogen, sulfur, or oxygen atoms in their ring structures, are particularly challenging to degrade. Little is known about their behavior or sorption onto biochar. In this thesis, biochar and activated carbon were effective in immobilizing PAHs and hetero-PAHs in real soils, with rates of immobilization reaching 100%. Biochar performed equally or better than activated carbon, offering a cost-effective alternative due to its lower price. Biochar reduce of metal(loid)s mobility in soil. Metal(loid)s like lead, zinc, and arsenic can contaminate soil through industrial sources, agricultural runoff, and other pollution, and are toxic to plants and animals, rendering the soil unsuitable for agriculture. When biochar is added to contaminated soil, it binds to metal(loid)s, preventing leaching into the environment. A biomass-dolomite composite was compared to activated carbon for immobilizing metal(loid)s in contaminated soils. The composite generally outperformed activated carbon and exhibited the ability to immobilize arsenic. In summary, biochar shows promise for phosphorus recovery, soil remediation, and reducing the mobility of heavy metals, offering cost-effective and sustainable solutions to these environmental challenges.