2 resultados para concentration (composition)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wine grape must deal with serious problems due to the unfavorable climatic conditions resulted from global warming. High temperatures result in oxidative damages to grape vines. The excessive elevated temperatures are critical for grapevine productivity and survival and contribute to degradation of grape and wine quality and yield. Elevated temperature can negatively affect anthocyanin accumulation in red grape. Particularly, cv. Sangiovese was identified to be very sensitive to such condition. The quantitative real-time PCR analysis showed that flavonoid biosynthetic genes were slightly repressed by high temperature. Also, the heat stress repressed the expression of the transcription factor “VvMYBA1” that activates the expression of UFGT. Moreover, high temperatures had repressing effects on the activity of the flavonoids biosynthetic enzymes “PAL” and “UFGT”.Anthocyanin accumulation in berry skin is due to the balance between its synthesis and oxidation. In grape cv. Sangiovese, the gene transcription and activity of peroxidases enzyme was elevated by heat stress as a defensive mechanism of ROS-scavenging. Among many isoforms of peroxidases genes, one gene (POD 1) was induced in Sangiovese under thermal stress condition. This gene was isolated and evaluated via the technique of genes transformation from grape to Petunia. Reduction in anthocyanins concentration and higher enzymatic activity of peroxidase was observed in POD 1 transformed Petunia after heat shock compared to untrasformed control. Moreover, in wine producing regions, it is inevitable for the grape growers to adopt some adaptive strategies to alleviate grape damages to abiotic stresses. Therefore, in this thesis, the technique of post veraison trimming was done to improve the coupling of phenolic and sugar ripening in Vitis vinifera L. cultivar Sangiovese. Trimming after veraison showed to be executable to slow down the rate of sugar accumulation in grape (to decrease the alcohol potential in wines) without evolution of the main berry flavonoids compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports three experimental studies that may contribute to understand how the sources or types of dietary fibres (DFs) included in sow diet with similar level of total DFs influence the composition of colostrum and milk and their related effects on offspring performance and gut microbiota. The first study showed that decreasing the level of hemicelluloses (HCs) in sow’s lactation diet increased the proportion of butyrate and the concentration of volatile fatty acids (VFAs), copper and threonine in milk. Simultaneously, the post-weaning growth of low birthweight piglets was improved, and the diarrhoea occurrence was reduced during the second week post-weaning. The second study showed that the level of HCs in the diet of lactating sows affected their faecal microbiota, modified the VFA profile in sow’s faeces during lactation and barely impacted the faecal microbiota of slow and fast growing piglets. The third study showed that replacing a source soluble DFs by one of insoluble DFs in sow’s diet during late gestation and lactation reduced farrowing duration, increased total VFAs and lactoferrin concentrations in colostrum, improved growth performance from birth to 1 day of lactation, during the post-weaning period and throughout the study, and reduced diarrhoea occurrence during the first week post-weaning. Finally, a fourth study proposed a workflow to analyse low biomass samples from the umbilical cord blood aiming at investigating the existence of a pre-birth microbiota with no substantial findings to confirm this hypothesis. Overall, the results of these studies confirmed that, besides the level of DFs, the sources, and the types of DFs included in the sow's diet shape the sow's microbiota, influence the composition of colostrum and milk, and improve offspring performance, but with limited impacts on the microbiota of piglets.