10 resultados para compressive well
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Composite porcelain enamels are inorganic coatings for metallic components based on a special ceramic-vitreous matrix in which specific additives are randomly dispersed. The ceramic-vitreous matrix is made by a mixture of various raw materials and elements and in particular it is based on boron-silicate glass added with metal oxides(1) of titanium, zinc, tin, zirconia, alumina, ecc. These additions are often used to improve and enhance some important performances such as corrosion(2) and wear resistance, mechanical strength, fracture toughness and also aesthetic functions. The coating process, called enamelling, depends on the nature of the surface, but also on the kind of the used porcelain enamel. For metal sheets coatings two industrial processes are actually used: one based on a wet porcelain enamel and another based on a dry-silicone porcelain enamel. During the firing process, that is performed at about 870°C in the case of a steel substrate, the enamel raw material melts and interacts with the metal substrate so enabling the formation of a continuous varying structure. The interface domain between the substrate and the external layer is made of a complex material system where the ceramic vitreous and the metal constituents are mixed. In particular four main regions can be identified, (i) the pure metal region, (ii) the region where the metal constituents are dominant compared with the ceramic vitreous components, (iii) the region where the ceramic vitreous constituents are dominant compared with the metal ones, and the fourth region (iv) composed by the pure ceramic vitreous material. It has also to be noticed the presence of metallic dendrites that hinder the substrate and the external layer passing through the interphase region. Each region of the final composite structure plays a specific role: the metal substrate has mainly the structural function, the interphase region and the embedded dendrites guarantee the adhesion of the external vitreous layer to the substrate and the external vitreous layer is characterized by an high tribological, corrosion and thermal shock resistance. Such material, due to its internal composition, functionalization and architecture can be considered as a functionally graded composite material. The knowledge of the mechanical, tribological and chemical behavior of such composites is not well established and the research is still in progress. In particular the mechanical performances data about the composite coating are not jet established. In the present work the Residual Stresses, the Young modulus and the First Crack Failure of the composite porcelain enamel coating are studied. Due to the differences of the porcelain composite enamel and steel thermal properties the enamelled steel sheets have residual stresses: compressive residual stress acts on the coating and tensile residual stress acts on the steel sheet. The residual stresses estimation has been performed by measuring the curvature of rectangular one-side coated specimens. The Young modulus and the First Crack Failure (FCF) of the coating have been estimated by four point bending tests (3-7) monitored by means of the Acoustic Emission (AE) technique(5,6). In particular the AE information has been used to identify, during the bending tests, the displacement domain over which no coating failure occurs (Free Failure Zone, FFZ). In the FFZ domain, the Young modulus has been estimated according to ASTM D6272-02. The FCF has been calculated as the ratio between the displacement at the first crack of the coating and the coating thickness on the cracked side. The mechanical performances of the tested coated specimens have also been related and discussed to respective microstructure and surface characteristics by double entry charts.
Resumo:
Abstract. This thesis presents a discussion on a few specific topics regarding the low velocity impact behaviour of laminated composites. These topics were chosen because of their significance as well as the relatively limited attention received so far by the scientific community. The first issue considered is the comparison between the effects induced by a low velocity impact and by a quasi-static indentation experimental test. An analysis of both test conditions is presented, based on the results of experiments carried out on carbon fibre laminates and on numerical computations by a finite element model. It is shown that both quasi-static and dynamic tests led to qualitatively similar failure patterns; three characteristic contact force thresholds, corresponding to the main steps of damage progression, were identified and found to be equal for impact and indentation. On the other hand, an equal energy absorption resulted in a larger delaminated area in quasi-static than in dynamic tests, while the maximum displacement of the impactor (or indentor) was higher in the case of impact, suggesting a probably more severe fibre damage than in indentation. Secondly, the effect of different specimen dimensions and boundary conditions on its impact response was examined. Experimental testing showed that the relationships of delaminated area with two significant impact parameters, the absorbed energy and the maximum contact force, did not depend on the in-plane dimensions and on the support condition of the coupons. The possibility of predicting, by means of a simplified numerical computation, the occurrence of delaminations during a specific impact event is also discussed. A study about the compressive behaviour of impact damaged laminates is also presented. Unlike most of the contributions available about this subject, the results of compression after impact tests on thin laminates are described in which the global specimen buckling was not prevented. Two different quasi-isotropic stacking sequences, as well as two specimen geometries, were considered. It is shown that in the case of rectangular coupons the lay-up can significantly affect the damage induced by impact. Different buckling shapes were observed in laminates with different stacking sequences, in agreement with the results of numerical analysis. In addition, the experiments showed that impact damage can alter the buckling mode of the laminates in certain situations, whereas it did not affect the compressive strength in every case, depending on the buckling shape. Some considerations about the significance of the test method employed are also proposed. Finally, a comprehensive study is presented regarding the influence of pre-existing in-plane loads on the impact response of laminates. Impact events in several conditions, including both tensile and compressive preloads, both uniaxial and biaxial, were analysed by means of numerical finite element simulations; the case of laminates impacted in postbuckling conditions was also considered. The study focused on how the effect of preload varies with the span-to-thickness ratio of the specimen, which was found to be a key parameter. It is shown that a tensile preload has the strongest effect on the peak stresses at low span-to-thickness ratios, leading to a reduction of the minimum impact energy required to initiate damage, whereas this effect tends to disappear as the span-to-thickness ratio increases. On the other hand, a compression preload exhibits the most detrimental effects at medium span-to-thickness ratios, at which the laminate compressive strength and the critical instability load are close to each other, while the influence of preload can be negligible for thin plates or even beneficial for very thick plates. The possibility to obtain a better explanation of the experimental results described in the literature, in view of the present findings, is highlighted. Throughout the thesis the capabilities and limitations of the finite element model, which was implemented in an in-house program, are discussed. The program did not include any damage model of the material. It is shown that, although this kind of analysis can yield accurate results as long as damage has little effect on the overall mechanical properties of a laminate, it can be helpful in explaining some phenomena and also in distinguishing between what can be modelled without taking into account the material degradation and what requires an appropriate simulation of damage. Sommario. Questa tesi presenta una discussione su alcune tematiche specifiche riguardanti il comportamento dei compositi laminati soggetti ad impatto a bassa velocità. Tali tematiche sono state scelte per la loro importanza, oltre che per l’attenzione relativamente limitata ricevuta finora dalla comunità scientifica. La prima delle problematiche considerate è il confronto fra gli effetti prodotti da una prova sperimentale di impatto a bassa velocità e da una prova di indentazione quasi statica. Viene presentata un’analisi di entrambe le condizioni di prova, basata sui risultati di esperimenti condotti su laminati in fibra di carbonio e su calcoli numerici svolti con un modello ad elementi finiti. È mostrato che sia le prove quasi statiche sia quelle dinamiche portano a un danneggiamento con caratteristiche qualitativamente simili; tre valori di soglia caratteristici della forza di contatto, corrispondenti alle fasi principali di progressione del danno, sono stati individuati e stimati uguali per impatto e indentazione. D’altro canto lo stesso assorbimento di energia ha portato ad un’area delaminata maggiore nelle prove statiche rispetto a quelle dinamiche, mentre il massimo spostamento dell’impattatore (o indentatore) è risultato maggiore nel caso dell’impatto, indicando la probabilità di un danneggiamento delle fibre più severo rispetto al caso dell’indentazione. In secondo luogo è stato esaminato l’effetto di diverse dimensioni del provino e diverse condizioni al contorno sulla sua risposta all’impatto. Le prove sperimentali hanno mostrato che le relazioni fra l’area delaminata e due parametri di impatto significativi, l’energia assorbita e la massima forza di contatto, non dipendono dalle dimensioni nel piano dei provini e dalle loro condizioni di supporto. Viene anche discussa la possibilità di prevedere, per mezzo di un calcolo numerico semplificato, il verificarsi di delaminazioni durante un determinato caso di impatto. È presentato anche uno studio sul comportamento a compressione di laminati danneggiati da impatto. Diversamente della maggior parte della letteratura disponibile su questo argomento, vengono qui descritti i risultati di prove di compressione dopo impatto su laminati sottili durante le quali l’instabilità elastica globale dei provini non è stata impedita. Sono state considerate due differenti sequenze di laminazione quasi isotrope, oltre a due geometrie per i provini. Viene mostrato come nel caso di provini rettangolari la sequenza di laminazione possa influenzare sensibilmente il danno prodotto dall’impatto. Due diversi tipi di deformate in condizioni di instabilità sono stati osservati per laminati con diversa laminazione, in accordo con i risultati dell’analisi numerica. Gli esperimenti hanno mostrato inoltre che in certe situazioni il danno da impatto può alterare la deformata che il laminato assume in seguito ad instabilità; d’altra parte tale danno non ha sempre influenzato la resistenza a compressione, a seconda della deformata. Vengono proposte anche alcune considerazioni sulla significatività del metodo di prova utilizzato. Infine viene presentato uno studio esaustivo riguardo all’influenza di carichi membranali preesistenti sulla risposta all’impatto dei laminati. Sono stati analizzati con simulazioni numeriche ad elementi finiti casi di impatto in diverse condizioni di precarico, sia di trazione sia di compressione, sia monoassiali sia biassiali; è stato preso in considerazione anche il caso di laminati impattati in condizioni di postbuckling. Lo studio si è concentrato in particolare sulla dipendenza degli effetti del precarico dal rapporto larghezza-spessore del provino, che si è rivelato un parametro fondamentale. Viene illustrato che un precarico di trazione ha l’effetto più marcato sulle massime tensioni per bassi rapporti larghezza-spessore, portando ad una riduzione della minima energia di impatto necessaria per innescare il danneggiamento, mentre questo effetto tende a scomparire all’aumentare di tale rapporto. Il precarico di compressione evidenzia invece gli effetti più deleteri a rapporti larghezza-spessore intermedi, ai quali la resistenza a compressione del laminato e il suo carico critico di instabilità sono paragonabili, mentre l’influenza del precarico può essere trascurabile per piastre sottili o addirittura benefica per piastre molto spesse. Viene evidenziata la possibilità di trovare una spiegazione più soddisfacente dei risultati sperimentali riportati in letteratura, alla luce del presente contributo. Nel corso della tesi vengono anche discussi le potenzialità ed i limiti del modello ad elementi finiti utilizzato, che è stato implementato in un programma scritto in proprio. Il programma non comprende alcuna modellazione del danneggiamento del materiale. Viene però spiegato come, nonostante questo tipo di analisi possa portare a risultati accurati soltanto finché il danno ha scarsi effetti sulle proprietà meccaniche d’insieme del laminato, esso possa essere utile per spiegare alcuni fenomeni, oltre che per distinguere fra ciò che si può riprodurre senza tenere conto del degrado del materiale e ciò che invece richiede una simulazione adeguata del danneggiamento.
Resumo:
In this work we study the relation between crustal heterogeneities and complexities in fault processes. The first kind of heterogeneity considered involves the concept of asperity. The presence of an asperity in the hypocentral region of the M = 6.5 earthquake of June 17-th, 2000 in the South Iceland Seismic Zone was invoked to explain the change of seismicity pattern before and after the mainshock: in particular, the spatial distribution of foreshock epicentres trends NW while the strike of the main fault is N 7◦ E and aftershocks trend accordingly; the foreshock depths were typically deeper than average aftershock depths. A model is devised which simulates the presence of an asperity in terms of a spherical inclusion, within a softer elastic medium in a transform domain with a deviatoric stress field imposed at remote distances (compressive NE − SW, tensile NW − SE). An isotropic compressive stress component is induced outside the asperity, in the direction of the compressive stress axis, and a tensile component in the direction of the tensile axis; as a consequence, fluid flow is inhibited in the compressive quadrants while it is favoured in tensile quadrants. Within the asperity the isotropic stress vanishes but the deviatoric stress increases substantially, without any significant change in the principal stress directions. Hydrofracture processes in the tensile quadrants and viscoelastic relaxation at depth may contribute to lower the effective rigidity of the medium surrounding the asperity. According to the present model, foreshocks may be interpreted as induced, close to the brittle-ductile transition, by high pressure fluids migrating upwards within the tensile quadrants; this process increases the deviatoric stress within the asperity which eventually fails, becoming the hypocenter of the mainshock, on the optimally oriented fault plane. In the second part of our work we study the complexities induced in fault processes by the layered structure of the crust. In the first model proposed we study the case in which fault bending takes place in a shallow layer. The problem can be addressed in terms of a deep vertical planar crack, interacting with a shallower inclined planar crack. An asymptotic study of the singular behaviour of the dislocation density at the interface reveals that the density distribution has an algebraic singularity at the interface of degree ω between -1 and 0, depending on the dip angle of the upper crack section and on the rigidity contrast between the two media. From the welded boundary condition at the interface between medium 1 and 2, a stress drop discontinuity condition is obtained which can be fulfilled if the stress drop in the upper medium is lower than required for a planar trough-going surface: as a corollary, a vertically dipping strike-slip fault at depth may cross the interface with a sedimentary layer, provided that the shallower section is suitably inclined (fault "refraction"); this results has important implications for our understanding of the complexity of the fault system in the SISZ; in particular, we may understand the observed offset of secondary surface fractures with respect to the strike direction of the seismic fault. The results of this model also suggest that further fractures can develop in the opposite quadrant and so a second model describing fault branching in the upper layer is proposed. As the previous model, this model can be applied only when the stress drop in the shallow layer is lower than the value prescribed for a vertical planar crack surface. Alternative solutions must be considered if the stress drop in the upper layer is higher than in the other layer, which may be the case when anelastic processes relax deviatoric stress in layer 2. In such a case one through-going crack cannot fulfil the welded boundary conditions and unwelding of the interface may take place. We have solved this problem within the theory of fracture mechanics, employing the boundary element method. The fault terminates against the interface in a T-shaped configuration, whose segments interact among each other: the lateral extent of the unwelded surface can be computed in terms of the main fault parameters and the stress field resulting in the shallower layer can be modelled. A wide stripe of high and nearly uniform shear stress develops above the unwelded surface, whose width is controlled by the lateral extension of unwelding. Secondary shear fractures may then open within this stripe, according to the Coulomb failure criterion, and the depth of open fractures opening in mixed mode may be computed and compared with the well studied fault complexities observed in the field. In absence of the T-shaped decollement structure, stress concentration above the seismic fault would be difficult to reconcile with observations, being much higher and narrower.
Resumo:
Iberia Africa plate boundary, cross, roughly W-E, connecting the eastern Atlantic Ocean from Azores triple junction to the Continental margin of Morocco. Relative movement between the two plate change along the boundary, from transtensive near the Azores archipelago, through trascurrent movement in the middle at the Gloria Fracture Zone, to transpressive in the Gulf of Cadiz area. This study presents the results of geophysical and geological analysis on the plate boundary area offshore Gibraltar. The main topic is to clarify the geodynamic evolution of this area from Oligocene to Quaternary. Recent studies have shown that the new plate boundary is represented by a 600 km long set of aligned, dextral trascurrent faults (the SWIM lineaments) connecting the Gloria fault to the Riff orogene. The western termination of these lineaments crosscuts the Gibraltar accretionary prism and seems to reach the Moroccan continental shelf. In the past two years newly acquired bathymetric data collected in the Moroccan offshore permit to enlighten the present position of the eastern portion of the plate boundary, previously thought to be a diffuse plate boundary. The plate boundary evolution, from the onset of compression in the Oligocene to the Late Pliocene activation of trascurrent structures, is not yet well constrained. The review of available seismics lines, gravity and bathymetric data, together with the analysis of new acquired bathymetric and high resolution seismic data offshore Morocco, allows to understand how the deformation acted at lithospheric scale under the compressive regime. Lithospheric folding in the area is suggested, and a new conceptual model is proposed for the propagation of the deformation acting in the brittle crust during this process. Our results show that lithospheric folding, both in oceanic and thinned continental crust, produced large wavelength synclines bounded by short wavelength, top thrust, anticlines. Two of these anticlines are located in the Gulf of Cadiz, and are represented by the Gorringe Ridge and Coral Patch seamounts. Lithospheric folding probably interacted with the Monchique – Madeira hotspot during the 72 Ma to Recent, NNE – SSW transit. Plume related volcanism is for the first time described on top of the Coral Patch seamount, where nine volcanoes are found by means of bathymetric data. 40Ar-39Ar age of 31.4±1.98 Ma are measured from one rock sample of one of these volcanoes. Analysis on biogenic samples show how the Coral Patch act as a starved offshore seamount since the Chattian. We proposed that compression stress formed lithospheric scale structures playing as a reserved lane for the upwelling of mantle material during the hotspot transit. The interaction between lithospheric folding and the hotspot emplacement can be also responsible for the irregularly spacing, and anomalous alignments, of individual islands and seamounts belonging to the Monchique - Madeira hotspot.
Resumo:
The present work explores the psychosocial issues emerging from a large cross-sectional study aimed to assess the prevalence, clinical manifestations, and psychosocial correlates of hyperandrogenism in a population of Italian high school students. Participants were 1804 adolescents, aged between 15 and 19 years, who volunteered to fill in a package of self-report questionnaires (including the Psychosocial Index, the Symptom Questionnaire and Ryff’s Psychological Well-Being scales for the assessment of psychological aspects) and undergo a comprehensive physical examination. Significant gender differences were found with regard to psychological distress, with females reporting higher scores compared with males, but not on well-being dimensions. The relationships of well-being to distress were found to be complex. Although inversely associated, well-being and ill-being appeared to be distinct domains of mental functioning. The evaluation of the moderating effects of well-being in the association between stress and psychological distress indicated that well-being may act as a protective factor, contributing to less pronounced psychological distress as stress levels increased. Higher rates of somatic complaints were found among current smokers. However, substance use (i.e., smoking and drug use) was also found to be positively associated with some well-being dimensions. A considerable number of participants were found to present with disordered eating symptoms, particularly females, and associated higher stress levels and lower quality of life. Sport activities were found to favourably affect psychological health. As to clinical signs of hyperandrogenism, a significant impairment in psychosocial functioning was found among females, whereas no effects on psychological measures could be detected among males. Subgroups of adolescents with distinct clinical and psychological characteristics could be identified by means of cluster analysis. The present study provides new insights into better understanding of the complex relationships between well-being, distress and health status in the adolescent population, with important clinical implications.
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
It is usual to hear a strange short sentence: «Random is better than...». Why is randomness a good solution to a certain engineering problem? There are many possible answers, and all of them are related to the considered topic. In this thesis I will discuss about two crucial topics that take advantage by randomizing some waveforms involved in signals manipulations. In particular, advantages are guaranteed by shaping the second order statistic of antipodal sequences involved in an intermediate signal processing stages. The first topic is in the area of analog-to-digital conversion, and it is named Compressive Sensing (CS). CS is a novel paradigm in signal processing that tries to merge signal acquisition and compression at the same time. Consequently it allows to direct acquire a signal in a compressed form. In this thesis, after an ample description of the CS methodology and its related architectures, I will present a new approach that tries to achieve high compression by design the second order statistics of a set of additional waveforms involved in the signal acquisition/compression stage. The second topic addressed in this thesis is in the area of communication system, in particular I focused the attention on ultra-wideband (UWB) systems. An option to produce and decode UWB signals is direct-sequence spreading with multiple access based on code division (DS-CDMA). Focusing on this methodology, I will address the coexistence of a DS-CDMA system with a narrowband interferer. To do so, I minimize the joint effect of both multiple access (MAI) and narrowband (NBI) interference on a simple matched filter receiver. I will show that, when spreading sequence statistical properties are suitably designed, performance improvements are possible with respect to a system exploiting chaos-based sequences minimizing MAI only.
Resumo:
The aim of the dissertation was to test the feasibility of a new psychotherapeutic protocol for treating children and adolescents with mood and anxiety disorders: Child-Well-Being Therapy (CWBT). It originates from adult Well-Being Therapy protocol (WBT) and represents a conceptual innovation for treating affective disorders. WBT is based on the multidimensional model of well-being postulated by Ryff (eudaimonic perspective), in sequential combination with cognitive-behavioral therapy (CBT). Results showed that eudaimonic well-being was impaired in children with affective disorders in comparison with matched healthy students. A first open investigation aimed at exploring the feasibility of a 8-session CWBT protocol in a group of children with emotional and behavioural disorders has been implemented. Data showed how CWBT resulted associated to symptoms reduction, together with the decrease of externalizing problems, maintained at 1-year follow-up. CWBT triggered also an improvement in psychological well-being as well as an increasing flourishing trajectory over time. Subsequently, a modified and extended version of CWBT (12-sessions) has been developed and then tested in a controlled study with 34 patients (8 to 16 years) affected by mood and anxiety disorders. They were consecutively randomized into 3 different groups: CWBT, CBT, 6-month waiting list (WL). Both treatments resulted effective in decreasing distress and in improving well-being. Moreover, CWBT was associated with higher improvement in anxiety and showed a greater recovery rate (83%) than CBT (54%). Both groups maintained beneficial effects and CWBT group displayed a lower level of distress as well as a higher positive trend in well-being scores over time. Findings need to be interpret with caution, because of study limitations, however important clinical implications emerged. Further investigations should determine whether the sequential integration of well-being and symptom-oriented strategies could play an important role in children and adolescents’ psychotherapeutic options, fostering a successful adaptation to adversities during the growth process.
Resumo:
The latter part of the 20th century was a period characterized by a fundamental demographic transition of western society. This substantial and structural demographic change proposes several challenges to contemporary society and fosters the emergence of new issues and challenges. Among these, none is more crucial than the comprehension of the mechanisms and the processes that lead people to positive aging. Rowe and Kahn’s model of successful aging highlights the interplay between social engagement with life, health, and functioning for a positive aging experience. Other systemic models of successful aging (Kahana et al., 1996; 2003; Stevernik et al., 2006) emphasize the role of internal and external resources for attaining positive aging. Among these, the proactive coping strategies are indicated as important active strategies for avoiding the depletion of resources, counterbalancing the declines and maintaining social and civic involvement. The study has analyzed the role of proactive coping strategies for two facets of positive aging, the experience of a high social well-being and the presence of personal projects in fundamental life domains. As expected, the proactive coping strategies, referred to as the active management of the environment, the accumulation of resources and the actualization of human potentials are confirmed as positive predictors of high level of social well-being and of many personal projects focused on family, culture, leisure time, civic and social participation. Perceived health status give a significant contribution only to the possession of many personal projects. Gender and level of school education give also a significant contribution to these two dimensions of positive aging, highlighting how positive aging is rooted not only in the possession of personal resources, but also in historical models of education and in positive longitudinal chains related to early development.
Resumo:
Purpose. Despite work-related stress is one of the most studied topic in organizational psychology, many aspects as for example the use of different measures (e.g. subjective and objective, qualitative and quantitative) are still under debate. According to this, in order to enhance knowledge concerning which factors and processes contribute to create healthy workplaces, this thesis is composed by four different studies aiming to understand: a) the role of relevant antecedents (e.g. leadership, job demands, work-family conflict, social support etc.) and outcomes (e.g. workplace phobia, absenteeism etc.) of work-related stress; and b) how to manage psychosocial risk factors in the workplace. The studies. The first study focused on how disagreement between supervisors and their employees on leadership style (transformational and transactional) could affect workers well-being and work team variables. The second and third study used both subjective and objective data in order to increase the quality of the reliability of the results gained. Particularly, the second study focused on job demand and its relationship with objective sickness leave. Findings showed that despite there is no direct relationship between these two variables, job demand affects work-family conflict, which in turn affect exhaustion, which leads to absenteeism. The third study analysed the role of a new concept never studied before in organizational settings (workplace phobia), as a health outcome in the JD-R model, demonstrating also its relationship with absenteeism. The last study highlighted the added value of using the mixed methods research approach in order to detect and analyse context-specific job demands which could affects workers’ health. Conclusion. The findings of this thesis answered both to open questions in the scientific literature and to the social request of managing psychosocial risk factors in the workplace in order to enhance workers well-being.