5 resultados para compound stimuli
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Molecular recognition and self-assembly represent fundamental issues for the construction of supramolecular systems, structures in which the components are held together through non-covalent interactions. The study of host-guest complexes and mechanical interlocked molecules, important examples in this field, is necessary in order to characterize self-assembly processes, achieve more control over the molecular organization and develop sophisticated structures by using properly designed building blocks. The introduction of paramagnetic species, or spin labelling, represents an attractive opportunity that allows their detection and characterization by the Electron Spin Resonance spectroscopy, a valuable technique that provides additional information to those obtained by traditional methods. In this Thesis, recent progresses in the design and the synthesis of new paramagnetic host-guest complexes and rotaxanes characterized by the presence of nitroxide radicals and their investigation by ESR spectroscopy are reported. In Chapter 1 a brief overview of the principal concepts of supramolecular chemistry, the spin labelling approach and the development of ESR methods applied to paramagnetic systems are described. Chapter 2 and 3 are focused on the introduction of radicals in macrocycles as Cucurbiturils and Pillar[n]arenes, due to the interesting binding properties and the potential employment in rotaxanes, in order to investigate their structures and recognition properties. Chapter 4 deals with one of the most studied mechanical interlocked molecules, the bistable [2]rotaxane reported by Stoddart and Heath based on the ciclobis (paraquat-p-phenylene) CBPQT4+, that represents a well known example of molecular switch driven by external stimuli. The spin labelling of analogous architectures allows the monitoring by ESR spectroscopy of the switch mechanism involving the ring compound by tuning the spin exchange interaction. Finally, Chapter 5 contains the experimental procedures used for the synthesis of some of the compounds described in Chapter 2-4.
Resumo:
Epigenetic variability is a new mechanism for the study of human microevolution, because it creates both phenotypic diversity within an individual and within population. This mechanism constitutes an important reservoir for adaptation in response to new stimuli and recent studies have demonstrated that selective pressures shape not only the genetic code but also DNA methylation profiles. The aim of this thesis is the study of the role of DNA methylation changes in human adaptive processes, considering the Italian peninsula and macro-geographical areas. A whole-genome analysis of DNA methylation profile across the Italian penisula identified some genes whose methylation levels differ between individuals of different Italian districts (South, Centre and North of Italy). These genes are involved in nitrogen compound metabolism and genes involved in pathogens response. Considering individuals with different macro-geographical origins (individuals of Asians, European and African ancestry) more significant DMRs (differentially methylated regions) were identified and are located in genes involved in glucoronidation, in immune response as well as in cell comunication processes. A "profile" of each ancestry (African, Asian and European) was described. Moreover a deepen analysis of three candidate genes (KRTCAP3, MAD1L and BRSK2) in a cohort of individuals of different countries (Morocco, Nigeria, China and Philippines) living in Bologna, was performed in order to explore genetic and epigenetic diversity. Moreover this thesis have paved the way for the application of DNA methylation for the study of hystorical remains and in particular for the age-estimation of individuals starting from biological samples (such as teeth or blood). Noteworthy, a mathematical model that considered methylation values of DNA extracted from cementum and pulp of living individuals can estimate chronological age with high accuracy (median absolute difference between age estimated from DNA methylation and chronological age was 1.2 years).
Resumo:
Psychological characterisation of the somatosensory system often focusses on minimal units of perception, such as detection, localisation, and magnitude estimation of single events. Research on how multiple simultaneous stimuli are aggregated to create integrated, synthetic experiences is rarer. This thesis aims to shed a light on the mechanisms underlying the integration of multiple simultaneous stimuli, within and between different sub-modalities of the somatosensory system. First, we investigated the ability of healthy individuals to perceive the total intensity of composite somatosensory patterns. We found that the overall intensity of tactile, cold, or warm patterns was systematically overestimated when the multiple simultaneous stimuli had different intensities. Perception of somatosensory totals was biased towards the most salient element in the pattern. Furthermore, we demonstrated that peak-biased aggregation is a genuine perceptual phenomenon which does not rely on the discrimination of the parts, but is rather based on the salience of each stimulus. Next, we studied a classical thermal illusion to assess participants’ ability to localise thermal stimuli delivered on the fingers either in isolation, or in uniform and non-uniform patterns. We found that despite a surprisingly high accuracy in reporting the location of a single stimulus, when participants were presented with non-uniform patterns, their ability to identify the thermal state of a specific finger was completely abolished. Lastly, we investigated the perceptual and neural correlates of thermo-nociceptive interaction during the presentation of multiple thermal stimuli. We found that inhibition of pain by warmth was independent from both the position and the number of thermal stimuli administered. Our results suggest that nonlinear integration of multiple stimuli, within and between somatosensory sub-modalities, may be an efficient way by which the somatosensory system synthesises the complexity of reality, providing an extended and coherent perception of the world, in spite of its deep bandwidth limitations.
Resumo:
Salient stimuli, like sudden changes in the environment or emotional stimuli, generate a priority signal that captures attention even if they are task-irrelevant. However, to achieve goal-driven behavior, we need to ignore them and to avoid being distracted. It is generally agreed that top-down factors can help us to filter out distractors. A fundamental question is how and at which stage of processing the rejection of distractors is achieved. Two circumstances under which the allocation of attention to distractors is supposed to be prevented are represented by the case in which distractors occur at an unattended location (as determined by the deployment of endogenous spatial attention) and when the amount of visual working memory resources is reduced by an ongoing task. The present thesis is focused on the impact of these factors on three sources of distraction, namely auditory and visual onsets (Experiments 1 and 2, respectively) and pleasant scenes (Experiment 3). In the first two studies we recorded neural correlates of distractor processing (i.e., Event-Related Potentials), whereas in the last study we used interference effects on behavior (i.e., a slowing down of response times on a simultaneous task) to index distraction. Endogenous spatial attention reduced distraction by auditory stimuli and eliminated distraction by visual onsets. Differently, visual working memory load only affected the processing of visual onsets. Emotional interference persisted even when scenes occurred always at unattended locations and when visual working memory was loaded. Altogether, these findings indicate that the ability to detect the location of salient task-irrelevant sounds and identify the affective significance of natural scenes is preserved even when the amount of visual working memory resources is reduced by an ongoing task and when endogenous attention is elsewhere directed. However, these results also indicate that the processing of auditory and visual distractors is not entirely automatic.