16 resultados para complexity regularization

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Postnatal neurogenesis in the hippocampal dentate gyrus, can be modulated by numerous determinants, such as hormones, transmitters and stress. Among the factors positively interfering with neurogenesis, the complexity of the environment appears to play a particularly striking role. Adult mice reared in an enriched environment produce more neurons and exhibit better performance in hippocampus-specific learning tasks. While the effects of complex environments on hippocampal neurogenesis are well documented, there is a lack of information on the effects of living under socio-sensory deprivation conditions. Due to the immaturity of rats and mice at birth, studies dealing with the effects of environmental enrichment on hippocampal neurogenesis were carried out in adult animals, i.e. during a period of relatively low rate of neurogenesis. The impact of environment is likely to be more dramatic during the first postnatal weeks, because at this time granule cell production is remarkably higher than at later phases of development. The aim of the present research was to clarify whether and to what extent isolated or enriched rearing conditions affect hippocampal neurogenesis during the early postnatal period, a time window characterized by a high rate of precursor proliferation and to elucidate the mechanisms underlying these effects. The experimental model chosen for this research was the guinea pig, a precocious rodent, which, at 4-5 days of age can be independent from maternal care. Experimental design. Animals were assigned to a standard (control), an isolated, or an enriched environment a few days after birth (P5-P6). On P14-P17 animals received one daily bromodeoxyuridine (BrdU) injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. Methods. Brain sections were processed for BrdU immunhistochemistry, to quantify the new born and surviving cells. The phenotype of the surviving cells was examined by means of confocal microscopy and immunofluorescent double-labeling for BrdU and either a marker of neurons (NeuN) or a marker of astrocytes (GFAP). Apoptotic cell death was examined with the TUNEL method. Serial sections were processed for immunohistochemistry for i) vimentin, a marker of radial glial cells, ii) BDNF (brain-derived neurotrofic factor), a neurotrophin involved in neuron proliferation/survival, iii) PSA-NCAM (the polysialylated form of the neural cell adhesion molecule), a molecule associated with neuronal migration. Total granule cell number in the dentate gyrus was evaluated by stereological methods, in Nissl-stained sections. Results. Effects of isolation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of BDNF. Though in absolute terms P45 isolated animals had less surviving cells than controls, they showed no differences in survival rate and phenotype percent distribution compared to controls. Evaluation of the absolute number of surviving cells of each phenotype showed that isolated animals had a reduced number of cells with neuronal phenotype than controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that isolated animals had less granule cells than controls (-32% at P18 and -42% at P45). Effects of enrichment. In P18 enriched animals there was an increase in cell proliferation (+26%) compared to controls and a higher expression of BDNF. Though in both groups there was a decline in the number of BrdU-positive cells by P45, enriched animals had more surviving cells (+63) and a higher survival rate than controls. No differences were found between control and enriched animals in phenotype percent distribution. Evaluation of the absolute number of cells of each phenotype showed that enriched animals had a larger number of cells of each phenotype than controls. Looking at the location of cells of each phenotype we found that enriched animals had more new neurons in the granule cell layer and more astrocytes and cells with undetermined phenotype in the hilus. Enriched animals had a higher expression of PSA-NCAM in the granule cell layer and hilus Vimentin immunohistochemistry showed that in enriched animals radial glia cells were more numerous and had more processes.. Granule cell count revealed that enriched animals had more granule cells than controls (+37% at P18 and +31% at P45). Discussion. Results show that isolation rearing reduces hippocampal cell proliferation but does not affect cell survival, while enriched rearing increases both cell proliferation and cell survival. Changes in the expression of BDNF are likely to contribute to he effects of environment on precursor cell proliferation. The reduction and increase in final number of granule neurons in isolated and enriched animals, respectively, are attributable to the effects of environment on cell proliferation and survival and not to changes in the differentiation program. As radial glia cells play a pivotal role in neuron guidance to the granule cell layer, the reduced number of radial glia cells in isolated animals and the increased number in enriched animals suggests that the size of radial glia population may change dynamically, in order to match changes in neuron production. The high PSA-NCAM expression in enriched animals may concur to favor the survival of the new neurons by facilitating their migration to the granule cell layer. Conclusions. By using a precocious rodent we could demonstrate that isolated/enriched rearing conditions, at a time window during which intense granule cell proliferation takes place, lead to a notable decrease/increase of total granule cell number. The time-course and magnitude of postnatal granule cell production in guinea pigs are more similar to the human and non-human primate condition than in rats and mice. Translation of current data to humans would imply that exposure of children to environments poor/rich of stimuli may have a notably large impact on dentate neurogenesis and, very likely, on hippocampus dependent memory functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some fundamental biological processes such as embryonic development have been preserved during evolution and are common to species belonging to different phylogenetic positions, but are nowadays largely unknown. The understanding of cell morphodynamics leading to the formation of organized spatial distribution of cells such as tissues and organs can be achieved through the reconstruction of cells shape and position during the development of a live animal embryo. We design in this work a chain of image processing methods to automatically segment and track cells nuclei and membranes during the development of a zebrafish embryo, which has been largely validates as model organism to understand vertebrate development, gene function and healingrepair mechanisms in vertebrates. The embryo is previously labeled through the ubiquitous expression of fluorescent proteins addressed to cells nuclei and membranes, and temporal sequences of volumetric images are acquired with laser scanning microscopy. Cells position is detected by processing nuclei images either through the generalized form of the Hough transform or identifying nuclei position with local maxima after a smoothing preprocessing step. Membranes and nuclei shapes are reconstructed by using PDEs based variational techniques such as the Subjective Surfaces and the Chan Vese method. Cells tracking is performed by combining informations previously detected on cells shape and position with biological regularization constraints. Our results are manually validated and reconstruct the formation of zebrafish brain at 7-8 somite stage with all the cells tracked starting from late sphere stage with less than 2% error for at least 6 hours. Our reconstruction opens the way to a systematic investigation of cellular behaviors, of clonal origin and clonal complexity of brain organs, as well as the contribution of cell proliferation modes and cell movements to the formation of local patterns and morphogenetic fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myc is a transcription factor that can activate transcription of several hundreds genes by direct binding to their promoters at specific DNA sequences (E-box). However, recent studies have also shown that it can exert its biological role by repressing transcription. Such studies collectively support a model in which c-Myc-mediated repression occurs through interactions with transcription factors bound to promoter DNA regions but not through direct recognition of typical E-box sequences. Here, we investigated whether N-Myc can also repress gene transcription, and how this is mechanistically achieved. We used human neuroblastoma cells as a model system in that N-MYC amplification/over-expression represents a key prognostic marker of this tumour. By means of transcription profile analyses we could identify at least 5 genes (TRKA, p75NTR, ABCC3, TG2, p21) that are specifically repressed by N-Myc. Through a dual-step-ChIP assay and genetic dissection of gene promoters, we found that N-Myc is physically associated with gene promoters in vivo, in proximity of the transcription start site. N-Myc association with promoters requires interaction with other proteins, such as Sp1 and Miz1 transcription factors. Furthermore, we found that N-Myc may repress gene expression by interfering directly with Sp1 and/or with Miz1 activity (i.e. TRKA, p75NTR, ABCC3, p21) or by recruiting Histone Deacetylase 1 (Hdac1) (i.e. TG2). In vitro analyses show that distinct N-Myc domains can interact with Sp1, Miz1 and Hdac1, supporting the idea that Myc may participate in distinct repression complexes by interacting specifically with diverse proteins. Finally, results show that N-Myc, through repressed genes, affects important cellular functions, such as apoptosis, growth, differentiation and motility. Overall, our results support a model in which N-Myc, like c-Myc, can repress gene transcription by direct interaction with Sp1 and/or Miz1, and provide further lines of evidence on the importance of transcriptional repression by Myc factors in tumour biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis applies the ICC tecniques to the probabilistic polinomial complexity classes in order to get an implicit characterization of them. The main contribution lays on the implicit characterization of PP (which stands for Probabilistic Polynomial Time) class, showing a syntactical characterisation of PP and a static complexity analyser able to recognise if an imperative program computes in Probabilistic Polynomial Time. The thesis is divided in two parts. The first part focuses on solving the problem by creating a prototype of functional language (a probabilistic variation of lambda calculus with bounded recursion) that is sound and complete respect to Probabilistic Prolynomial Time. The second part, instead, reverses the problem and develops a feasible way to verify if a program, written with a prototype of imperative programming language, is running in Probabilistic polynomial time or not. This thesis would characterise itself as one of the first step for Implicit Computational Complexity over probabilistic classes. There are still open hard problem to investigate and try to solve. There are a lot of theoretical aspects strongly connected with these topics and I expect that in the future there will be wide attention to ICC and probabilistic classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Ph.D thesis focuses on iterative regularization methods for regularizing linear and nonlinear ill-posed problems. Regarding linear problems, three new stopping rules for the Conjugate Gradient method applied to the normal equations are proposed and tested in many numerical simulations, including some tomographic images reconstruction problems. Regarding nonlinear problems, convergence and convergence rate results are provided for a Newton-type method with a modified version of Landweber iteration as an inner iteration in a Banach space setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Doctoral Thesis unfolds into a collection of three distinct papers that share an interest in institutional theory and technology transfer. Taking into account that organizations are increasingly exposed to a multiplicity of demands and pressures, we aim to analyze what renders this situation of institutional complexity more or less difficult to manage for organizations, and what makes organizations more or less successful in responding to it. The three studies offer a novel contribution both theoretically and empirically. In particular, the first paper “The dimensions of organizational fields for understanding institutional complexity: A theoretical framework” is a theoretical contribution that tries to better understand the relationship between institutional complexity and fields by providing a framework. The second article “Beyond institutional complexity: The case of different organizational successes in confronting multiple institutional logics” is an empirical study which aims to explore the strategies that allow organizations facing multiple logics to respond more successfully to them. The third work “ How external support may mitigate the barriers to university-industry collaboration” is oriented towards practitioners and presents a case study about technology transfer in Italy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Curry-Howard isomorphism is the idea that proofs in natural deduction can be put in correspondence with lambda terms in such a way that this correspondence is preserved by normalization. The concept can be extended from Intuitionistic Logic to other systems, such as Linear Logic. One of the nice conseguences of this isomorphism is that we can reason about functional programs with formal tools which are typical of proof systems: such analysis can also include quantitative qualities of programs, such as the number of steps it takes to terminate. Another is the possiblity to describe the execution of these programs in terms of abstract machines. In 1990 Griffin proved that the correspondence can be extended to Classical Logic and control operators. That is, Classical Logic adds the possiblity to manipulate continuations. In this thesis we see how the things we described above work in this larger context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is the in vivo technique most commonly employed to characterize changes in brain structures. The conventional MRI-derived morphological indices are able to capture only partial aspects of brain structural complexity. Fractal geometry and its most popular index, the fractal dimension (FD), can characterize self-similar structures including grey matter (GM) and white matter (WM). Previous literature shows the need for a definition of the so-called fractal scaling window, within which each structure manifests self-similarity. This justifies the existence of fractal properties and confirms Mandelbrot’s assertion that "fractals are not a panacea; they are not everywhere". In this work, we propose a new approach to automatically determine the fractal scaling window, computing two new fractal descriptors, i.e., the minimal and maximal fractal scales (mfs and Mfs). Our method was implemented in a software package, validated on phantoms and applied on large datasets of structural MR images. We demonstrated that the FD is a useful marker of morphological complexity changes that occurred during brain development and aging and, using ultra-high magnetic field (7T) examinations, we showed that the cerebral GM has fractal properties also below the spatial scale of 1 mm. We applied our methodology in two neurological diseases. We observed the reduction of the brain structural complexity in SCA2 patients and, using a machine learning approach, proved that the cerebral WM FD is a consistent feature in predicting cognitive decline in patients with small vessel disease and mild cognitive impairment. Finally, we showed that the FD of the WM skeletons derived from diffusion MRI provides complementary information to those obtained from the FD of the WM general structure in T1-weighted images. In conclusion, the fractal descriptors of structural brain complexity are candidate biomarkers to detect subtle morphological changes during development, aging and in neurological diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of omic data production has opened many new perspectives in the quest for modelling complexity in biophysical systems. With the capability of characterizing a complex organism through the patterns of its molecular states, observed at different levels through various omics, a new paradigm of investigation is arising. In this thesis, we investigate the links between perturbations of the human organism, described as the ensemble of crosstalk of its molecular states, and health. Machine learning plays a key role within this picture, both in omic data analysis and model building. We propose and discuss different frameworks developed by the author using machine learning for data reduction, integration, projection on latent features, pattern analysis, classification and clustering of omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link different levels of omic observations of molecular states, from nanoscale to macroscale, to study perturbations such as diseases and diet interpreted as changes in molecular patterns. The first part of this work focuses on the fingerprinting of diseases, linking cellular and systemic metabolomics with genomic to asses and predict the downstream of perturbations all the way down to the enzymatic network. The second part is a set of frameworks and models, developed with 1H NMR metabolomic at its core, to study the exposure of the human organism to diet and food intake in its full complexity, from epidemiological data analysis to molecular characterization of food structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroblastoma (NB) is the most common type of tumor in infants and the third most common cancer in children. Current clinical practices employ a variety of strategies for NB treatment, ranging from standard chemotherapy to immunotherapy. Due to a lack of knowledge about the molecular mechanisms underlying the disease's onset, aggressive phenotype, and therapeutic resistance, these approaches are ineffective in the majority of instances. MYCN amplification is one of the most well-known genetic alterations associated with high risk in NB. The following work is divided into three sections and aims to provide new insights into the biology of NB and hypothetical new treatment strategies. First, we identified RUNX1T1 as a key gene involved in MYCN-driven NB onset in a transgenic mouse model. Our results suggested that that RUNX1T1 may recruit the Co-REST complex on target genes that regulate the differentiation of NB cells and that the interaction with RCOR3 is essential. Second, we provided insights into the role of MYCN in dysregulating the CDK/RB/E2F pathway controlling the G1/S transition of the cell cycle. We found that RB is dispensable in regulating MYCN amplified NB's cell cycle, providing the rationale for using cyclin/CDK complexes inhibitors in NBs carrying MYCN amplification and relatively high levels of RB1 expression. Third, we generated an M13 bacteriophage platform to target GD2-expressing cells in NB. Here, we generated a recombinant M13 phage capable of binding GD2-expressing cells selectively (M13GD2). Our results showed that M13GD2 chemically conjugated with the photosensitizer ECB04 preserves the retargeting capability, inducing cell death even at picomolar concentrations upon light irradiation. These results provided proof of concept for M13 phage employment in targeted photodynamic therapy for NB, an exciting strategy to overcome resistance to classical immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging technologies are widely used in application fields such as natural sciences, engineering, medicine, and life sciences. A broad class of imaging problems reduces to solve ill-posed inverse problems (IPs). Traditional strategies to solve these ill-posed IPs rely on variational regularization methods, which are based on minimization of suitable energies, and make use of knowledge about the image formation model (forward operator) and prior knowledge on the solution, but lack in incorporating knowledge directly from data. On the other hand, the more recent learned approaches can easily learn the intricate statistics of images depending on a large set of data, but do not have a systematic method for incorporating prior knowledge about the image formation model. The main purpose of this thesis is to discuss data-driven image reconstruction methods which combine the benefits of these two different reconstruction strategies for the solution of highly nonlinear ill-posed inverse problems. Mathematical formulation and numerical approaches for image IPs, including linear as well as strongly nonlinear problems are described. More specifically we address the Electrical impedance Tomography (EIT) reconstruction problem by unrolling the regularized Gauss-Newton method and integrating the regularization learned by a data-adaptive neural network. Furthermore we investigate the solution of non-linear ill-posed IPs introducing a deep-PnP framework that integrates the graph convolutional denoiser into the proximal Gauss-Newton method with a practical application to the EIT, a recently introduced promising imaging technique. Efficient algorithms are then applied to the solution of the limited electrods problem in EIT, combining compressive sensing techniques and deep learning strategies. Finally, a transformer-based neural network architecture is adapted to restore the noisy solution of the Computed Tomography problem recovered using the filtered back-projection method.