4 resultados para complex tasks

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of modern ICT technologies is radically changing many fields pushing toward more open and dynamic value chains fostering the cooperation and integration of many connected partners, sensors, and devices. As a valuable example, the emerging Smart Tourism field derived from the application of ICT to Tourism so to create richer and more integrated experiences, making them more accessible and sustainable. From a technological viewpoint, a recurring challenge in these decentralized environments is the integration of heterogeneous services and data spanning multiple administrative domains, each possibly applying different security/privacy policies, device and process control mechanisms, service access, and provisioning schemes, etc. The distribution and heterogeneity of those sources exacerbate the complexity in the development of integrating solutions with consequent high effort and costs for partners seeking them. Taking a step towards addressing these issues, we propose APERTO, a decentralized and distributed architecture that aims at facilitating the blending of data and services. At its core, APERTO relies on APERTO FaaS, a Serverless platform allowing fast prototyping of the business logic, lowering the barrier of entry and development costs to newcomers, (zero) fine-grained scaling of resources servicing end-users, and reduced management overhead. APERTO FaaS infrastructure is based on asynchronous and transparent communications between the components of the architecture, allowing the development of optimized solutions that exploit the peculiarities of distributed and heterogeneous environments. In particular, APERTO addresses the provisioning of scalable and cost-efficient mechanisms targeting: i) function composition allowing the definition of complex workloads from simple, ready-to-use functions, enabling smarter management of complex tasks and improved multiplexing capabilities; ii) the creation of end-to-end differentiated QoS slices minimizing interfaces among application/service running on a shared infrastructure; i) an abstraction providing uniform and optimized access to heterogeneous data sources, iv) a decentralized approach for the verification of access rights to resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research activity characterizing the present thesis was mainly centered on the design, development and validation of methodologies for the estimation of stationary and time-varying connectivity between different regions of the human brain during specific complex cognitive tasks. Such activity involved two main aspects: i) the development of a stable, consistent and reproducible procedure for functional connectivity estimation with a high impact on neuroscience field and ii) its application to real data from healthy volunteers eliciting specific cognitive processes (attention and memory). In particular the methodological issues addressed in the present thesis consisted in finding out an approach to be applied in neuroscience field able to: i) include all the cerebral sources in connectivity estimation process; ii) to accurately describe the temporal evolution of connectivity networks; iii) to assess the significance of connectivity patterns; iv) to consistently describe relevant properties of brain networks. The advancement provided in this thesis allowed finding out quantifiable descriptors of cognitive processes during a high resolution EEG experiment involving subjects performing complex cognitive tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-organising pervasive ecosystems of devices are set to become a major vehicle for delivering infrastructure and end-user services. The inherent complexity of such systems poses new challenges to those who want to dominate it by applying the principles of engineering. The recent growth in number and distribution of devices with decent computational and communicational abilities, that suddenly accelerated with the massive diffusion of smartphones and tablets, is delivering a world with a much higher density of devices in space. Also, communication technologies seem to be focussing on short-range device-to-device (P2P) interactions, with technologies such as Bluetooth and Near-Field Communication gaining greater adoption. Locality and situatedness become key to providing the best possible experience to users, and the classic model of a centralised, enormously powerful server gathering and processing data becomes less and less efficient with device density. Accomplishing complex global tasks without a centralised controller responsible of aggregating data, however, is a challenging task. In particular, there is a local-to-global issue that makes the application of engineering principles challenging at least: designing device-local programs that, through interaction, guarantee a certain global service level. In this thesis, we first analyse the state of the art in coordination systems, then motivate the work by describing the main issues of pre-existing tools and practices and identifying the improvements that would benefit the design of such complex software ecosystems. The contribution can be divided in three main branches. First, we introduce a novel simulation toolchain for pervasive ecosystems, designed for allowing good expressiveness still retaining high performance. Second, we leverage existing coordination models and patterns in order to create new spatial structures. Third, we introduce a novel language, based on the existing ``Field Calculus'' and integrated with the aforementioned toolchain, designed to be usable for practical aggregate programming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique to analyze and model complex dynamic real-world systems is presented. This method derives, directly from data, computationally efficient reduced-order models (ROMs) which can replace too onerous or unavailable high-fidelity physics-based models. Optimizations and extensions to the standard implementation of the methodology are proposed, investigating diverse case studies related to the decoding of complex flow phenomena. The flexibility of this data-driven technique allows its application to high-fidelity fluid dynamics simulations, as well as time series of real systems observations. The resulting ROMs are tested against two tasks: (i) reduction of the storage requirements of high-fidelity simulations or observations; (ii) interpolation and extrapolation of missing data. The capabilities of DMD can also be exploited to alleviate the cost of onerous studies that require many simulations, such as uncertainty quantification analysis, especially when dealing with complex high-dimensional systems. In this context, a novel approach to address parameter variability issues when modeling systems with space and time-variant response is proposed. Specifically, DMD is merged with another model-reduction technique, namely the Polynomial Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD deployment result from the study, together with the demonstration of its potential to ease diagnosis and scenario analysis when complex flow processes are involved.