4 resultados para columnar

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastroesophageal junction (GEJ) adenocarcinoma are uncommon before age of 40 years. While certain clinical, pathological and molecular features of GEJ adenocarcinoma in older patients have been extensively studied, these characteristics in the younger population remain to be determined. In the recent literature, a high sensitivity and specificity for the detection of dysplasia and esophageal adenocarcinoma was demonstrated by using multicolor fluorescence in situ hybridization (FISH) DNA probe set specific for the locus specific regions 9p21 (p16), 20q13.2 and Y chromosome. We evaluated 663 patients with GEJ adenocarcinoma and further divided them into 2 age-groups of or= 50 years, rispectively. FISH with selected DNA probe for Y chromosome, locus 9p21 (p16), and locus 20q13.2 was investigated with formalin fixed and parassin embedded tissue from surgical resections of 17 younger and 11 older patients. Signals were counted in > 100 cells with each given histopathological category. The chromosomal aberrations were then compared in the 2 age-groups with the focus on uninvolved squamous and columnar epithelium, intestinal metaplasia (Barrett's mucosa), glandular dysplasia, and adenocarcinoma. Comparisons were performed by the X2 test, Fisher's exact test, Student's t-test and Mann-Whitney U-test as appropriate. Survival was estimated by the Kaplan-Meier method with univariate analysis by the log-rank. Significance was taken at the 5% level. There was no difference in the surgical technique applied in both age groups and most patients underwent Ivor Lewis esophagectomy. Among clinical variables there was a higher incidence of smocking history in older patient group. We identified a progressive loss of Y chromosome from benign squamos epithelium to Barrett's mucosa and glandular dysplasia, and, ultimately, to a near complete loss in adenocarcinoma in both age groups. The young group revealed significantly more losses of 9p21 in both benign and neoplastic cells when compared to the older patients group. In addition, we demonstrated an increase in the percentage of cells showing gain of locus 20q13.2 with progression from benign epithelium through dysplasia to adenocarcinoma with almost the same trend in both the young and the older patients. When compared with the older age-group, younger patients with GEJ adenocarcinoma possess similar known demographics, environmental factors, clinical, and pathologic characteristics. The most commonly detected genetic aberrations of progressive Y chromosomal loss, 9p21 locus loss, and 20q13 gains were similar in the younger and older patients. However the rate of loss of 9p21 is significantly higher in young patients, in both the benign and the neoplastic cells. The loss of 9p21, and possibly, the subsequent inactivation of p16 gene may be one of the molecular mechanisms responsible for the accelerated neoplastic process in young patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supramolecular self-assembly represents a key technology for the spontaneous construction of nanoarchitectures and for the fabrication of materials with enhanced physical and chemical properties. In addition, a significant asset of supramolecular self-assemblies rests on their reversible formation, thanks to the kinetic lability of their non-covalent interactions. This dynamic nature can be exploited for the development of “self-healing” and “smart” materials towards the tuning of their functional properties upon various external factors. One particular intriguing objective in the field is to reach a high level of control over the shape and size of the supramolecular architectures, in order to produce well-defined functional nanostructures by rational design. In this direction, many investigations have been pursued toward the construction of self-assembled objects from numerous low-molecular weight scaffolds, for instance by exploiting multiple directional hydrogen-bonding interactions. In particular, nucleobases have been used as supramolecular synthons as a result of their efficiency to code for non-covalent interaction motifs. Among nucleobases, guanine represents the most versatile one, because of its different H-bond donor and acceptor sites which display self-complementary patterns of interactions. Interestingly, and depending on the environmental conditions, guanosine derivatives can form various types of structures. Most of the supramolecular architectures reported in this Thesis from guanosine derivatives require the presence of a cation which stabilizes, via dipole-ion interactions, the macrocyclic G-quartet that can, in turn, stack in columnar G-quadruplex arrangements. In addition, in absence of cations, guanosine can polymerize via hydrogen bonding to give a variety of supramolecular networks including linear ribbons. This complex supramolecular behavior confers to the guanine-guanine interactions their upper interest among all the homonucleobases studied. They have been subjected to intense investigations in various areas ranging from structural biology and medicinal chemistry – guanine-rich sequences are abundant in telomeric ends of chromosomes and promoter regions of DNA, and are capable of forming G-quartet based structures– to material science and nanotechnology. This Thesis, organized into five Chapters, describes mainly some recent advances in the form and function provided by self-assembly of guanine based systems. More generally, Chapter 4 will focus on the construction of supramolecular self-assemblies whose self-assembling process and self-assembled architectures can be controlled by light as external stimulus. Chapter 1 will describe some of the many recent studies of G-quartets in the general area of nanoscience. Natural G- quadruplexes can be useful motifs to build new structures and biomaterials such as self-assembled nanomachines, biosensors, therapeutic aptamer and catalysts. In Chapters 2-4 it is pointed out the core concept held in this PhD Thesis, i.e. the supramolecular organization of lipophilic guanosine derivatives with photo or chemical addressability. Chapter 2 will mainly focus on the use of cation-templated guanosine derivatives as a potential scaffold for designing functional materials with tailored physical properties, showing a new way to control the bottom-up realization of well-defined nanoarchitectures. In section 2.6.7, the self-assembly properties of compound 28a may be considered an example of open-shell moieties ordered by a supramolecular guanosine architecture showing a new (magnetic) property. Chapter 3 will report on ribbon-like structures, supramolecular architectures formed by guanosine derivatives that may be of interest for the fabrication of molecular nanowires within the framework of future molecular electronic applications. In section 3.4 we investigate the supramolecular polymerizations of derivatives dG 1 and G 30 by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties. Chapter 4 will describe photoresponsive self-assembling systems. Numerous research examples have demonstrated that the use of photochromic molecules in supramolecular self-assemblies is the most reasonable method to noninvasively manipulate their degree of aggregation and supramolecular architectures. In section 4.4 we report on the photocontrolled self-assembly of modified guanosine nucleobase E-42: by the introduction of a photoactive moiety at C8 it is possible to operate a photocontrol over the self-assembly of the molecule, where the existence of G-quartets can be alternately switched on and off. In section 4.5 we focus on the use of cyclodextrins as photoresponsive host-guest assemblies: αCD–azobenzene conjugates 47-48 (section 4.5.3) are synthesized in order to obtain a photoresponsive system exhibiting a fine photocontrollable degree of aggregation and self-assembled architecture. Finally, Chapter 5 contains the experimental protocols used for the research described in Chapters 2-4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembly relies on the association of pre-programmed building blocks through non-covalent interactions to give complex supramolecular architectures. Previous studies provided evidence for the unique self-assembly properties of semi-synthetic lipophilic guanosine derivatives which can sequestrate ions from an aqueous phase, carry them into an organic phase where they promote the generation of well-defined supramolecular assemblies. In the presence of cations lipophilic guanosines form columnar aggregates while in their absence they generate supramolecular ribbons. The aim of this thesis has been the synthesis of guanine derivatives, in particular N9-alkylated guanines and a guanosine functionalized as a perchlorotriphenylmetil moiety (Gace-a-HPTM) in order to observe their supramolecular behaviour in the absence of sugar (ribose or deoxyribose) and in the presence of a bulky and chiral substituent respectively. By using guanine instead of guanosine, while maintaining all the hydrogen bond acceptor and donor groups required for supramolecular aggregation, the steric hindrance to supramolecular aggregation is notably reduced because (i.e. guanines with groups in N9 different from sugar are expected to have a greatest conformational freedom even in presence of bulky groups in C8). Supramolecular self-assembly of these derivatives has been accomplished in solutions by NMR and CD spectroscopy and on surface by STM technique. In analogy with other guanosine derivatives, also N9-substituted guanines and GAceHPTM form either ribbon-like aggregates or cation-templated G-quartet based columnar structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is the elucidation of structure-properties relationship of molecular semiconductors for electronic devices. This involves the use of a comprehensive set of simulation techniques, ranging from quantum-mechanical to numerical stochastic methods, and also the development of ad-hoc computational tools. In more detail, the research activity regarded two main topics: the study of electronic properties and structural behaviour of liquid crystalline (LC) materials based on functionalised oligo(p-phenyleneethynylene) (OPE), and the investigation on the electric field effect associated to OFET operation on pentacene thin film stability. In this dissertation, a novel family of substituted OPE liquid crystals with applications in stimuli-responsive materials is presented. In more detail, simulations can not only provide evidence for the characterization of the liquid crystalline phases of different OPEs, but elucidate the role of charge transfer states in donor-acceptor LCs containing an endohedral metallofullerene moiety. Such systems can be regarded as promising candidates for organic photovoltaics. Furthermore, exciton dynamics simulations are performed as a way to obtain additional information about the degree of order in OPE columnar phases. Finally, ab initio and molecular mechanics simulations are used to investigate the influence of an applied electric field on pentacene reactivity and stability. The reaction path of pentacene thermal dimerization in the presence of an external electric field is investigated; the results can be related to the fatigue effect observed in OFETs, that show significant performance degradation even in the absence of external agents. In addition to this, the effect of the gate voltage on a pentacene monolayer are simulated, and the results are then compared to X-ray diffraction measurements performed for the first time on operating OFETs.