3 resultados para colorectal tumor
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Inflammatory bowel diseases are associated with increased risk of developing colitis-associated colorectal cancer (CAC). Epidemiological data show that the consumption of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of sporadic colorectal cancer (CRC). Importantly, recent data have shown that eicosapentaenoic acid-free fatty acid (EPA-FFA) reduces polyps formation and growth in models of familial adenomatous polyposis. However, the effects of dietary EPA-FFA are unknown in CAC. We tested the effectiveness of substituting EPA-FFA, for other dietary fats, in preventing inflammation and cancer in the AOM-DSS model of CAC. The AOM-DSS protocols were designed to evaluate the effect of EPA-FFA on both initiation and promotion of carcinogenesis. We found that EPA-FFA diet strongly decreased tumor multiplicity, incidence and maximum tumor size in the promotion and initiation arms. Moreover EPA-FFA, in particular in the initiation arm, led to reduced cell proliferation and nuclear β-catenin expression, whilst it increased apoptosis. In both arms, EPA-FFA treatment led to increased membrane switch from ω-6 to ω-3 PUFAs and a concomitant reduction in PGE2 production. We observed no significant changes in intestinal inflammation between EPA-FFA treated arms and AOM-DSS controls. Importantly, we found that EPA-FFA treatment restored the loss of Notch signaling found in the AOM-DSS control, resulted in the enrichment of Lactobacillus species in the gut microbiota and led to tumor suppressor miR34-a induction. In conclusion, our data suggest that EPA-FFA is an effective chemopreventive agent in CAC.
Resumo:
Glycosyltransferases ST6GAL1 and B4GALNT2 (and their cognate antigens Sia6LacNAc and Sda, respectively) are associated with colorectal cancer (CRC) but it is not fully clear their biological and clinical significance. We explored the clinical relevance of both glycosyltransferases by interrogating The Cancer Genome Atlas (TCGA) database while the phenotypic/transcriptomic effects of ST6GAL1/B4GALNT2 overexpression were studied in genetically modified CRC cell lines. Transcriptomic data from CRC patients in TCGA database suggested a moderate impact of ST6GAL1 on CRC progression, although it was not possible to define a clear role for this glycosyltransferase. Transcriptomic analysis of ST6GAL1-transduced cell lines revealed a much deeper effect of ST6GAL1 on gene expression in SW948 than in SW48. The overexpression of ST6GAL1 induced opposite effects on soft agar growth and wound healing in both cell lines. These results indicate that the impact of a cancer-associated glycosyltransferase change on phenotype/transcriptome can be extremely variable, depending on the molecular context of the tumor cell. On the contrary, transcriptomic analysis of B4GALNT2-modified cell lines together with TCGA database survey demonstrated a strong impact of B4GALNT2 on the transcriptional activity of CRC cells, in particular its association with a better prognosis. We suggest an anti-tumoral role of B4GALNT2 in CRC. We also investigated the glycan changes related to ST6GAL1/B4GALNT2 expression in a small cohort of tissues/plasma as well as the N-glycomic profile of CRC, normal and polyp tissues. We found an increase of ST6GAL1 activity in CRC and inflammatory bowel disease plasma samples comparing with plasma from healthy donors. A different Sda protein carrier pattern was observed between healthy donors and CRC plasma samples. β-arrestin 1 is a possible candidate as Sda carrier protein in plasma samples although future validation studies are needed. The alterations found in the N-glycan pattern highlight the importance of N-glycome as a molecular signature in cancer.
Resumo:
In colorectal cancer (CRC), two carbohydrate structures are modulated: the Sda antigen, synthesized by B4GALNT2, and sLex antigen, mainly synthesized by FUT6. sLex antigen is often overexpressed and associated with worse prognosis; B4GALNT2/Sda antigen are dramatically downregulated but their role in tumor progression and development is not fully clear. TCGA interrogation revealed a dramatic down-regulation of B4GALNT2 mRNA in CRC, compared with normal samples. Patients with higher B4GALNT2 mRNA in CRC samples displayed longer survival. Yet, methylation and miRNA expression play a relevant role in B4GALNT2 downregulation in CRC. To clarify the mechanisms linking the B4GALNT2/Sda expression level to CRC phenotype, three different CRC cell lines were modified to express B4GALNT2: LS174T cell line, in which the constitutively expressed sLex antigen was partially replaced by Sda; SW480/SW620 pair, both lacking Sda and sLex antigens. In LS174T cells, the expression of B4GALNT2 reduced the ability to grow in poor adherence conditions and the expression of ALDH, a stemness marker. In SW620 cells, B4GALNT2 expression impacted on the main aspects of malignancy. In SW480 cells the expression of B4GALNT2 left unchanged the proliferation rate and the wound healing ability. To clarify the impact of sLex on CRC phenotype, the SW480/SW620 pair were permanently transfected to express FUT6 cDNA. In both cell lines, overexpression of FUT6/sLex boosted the clonogenic ability in standard growth conditions. Conversely, the growth in soft agar and the capacity to close a wound were enhanced only in SW620 cells. Transcriptome analysis of CRC cell lines transfected either with B4GALNT2 or FUT6 showed a relevant impact of both enzymes on gene expression modulation. Overall, current data may help to personalize therapies for CRC patients according to the B4GALNT2 levels and support a causal effect of this glycosyltransferase on reducing malignancy independently of sLex inhibition.