4 resultados para cognition and learning
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.
Resumo:
The integration of distributed and ubiquitous intelligence has emerged over the last years as the mainspring of transformative advancements in mobile radio networks. As we approach the era of “mobile for intelligence”, next-generation wireless networks are poised to undergo significant and profound changes. Notably, the overarching challenge that lies ahead is the development and implementation of integrated communication and learning mechanisms that will enable the realization of autonomous mobile radio networks. The ultimate pursuit of eliminating human-in-the-loop constitutes an ambitious challenge, necessitating a meticulous delineation of the fundamental characteristics that artificial intelligence (AI) should possess to effectively achieve this objective. This challenge represents a paradigm shift in the design, deployment, and operation of wireless networks, where conventional, static configurations give way to dynamic, adaptive, and AI-native systems capable of self-optimization, self-sustainment, and learning. This thesis aims to provide a comprehensive exploration of the fundamental principles and practical approaches required to create autonomous mobile radio networks that seamlessly integrate communication and learning components. The first chapter of this thesis introduces the notion of Predictive Quality of Service (PQoS) and adaptive optimization and expands upon the challenge to achieve adaptable, reliable, and robust network performance in dynamic and ever-changing environments. The subsequent chapter delves into the revolutionary role of generative AI in shaping next-generation autonomous networks. This chapter emphasizes achieving trustworthy uncertainty-aware generation processes with the use of approximate Bayesian methods and aims to show how generative AI can improve generalization while reducing data communication costs. Finally, the thesis embarks on the topic of distributed learning over wireless networks. Distributed learning and its declinations, including multi-agent reinforcement learning systems and federated learning, have the potential to meet the scalability demands of modern data-driven applications, enabling efficient and collaborative model training across dynamic scenarios while ensuring data privacy and reducing communication overhead.
Resumo:
This thesis investigated affordances and verbal language to demonstrate the flexibility of embodied simulation processes. Starting from the assumption that both object/action understanding and language comprehension are tied to the context in which they take place, six studies clarified the factors that modulate simulation. The studies in chapter 4 and 5 investigated affordance activation in complex scenes, revealing the strong influence of the visual context, which included either objects and actions, on compatibility effects. The study in chapter 6 compared the simulation triggered by visual objects and objects names, showing differences depending on the kind of materials processed. The study in chapter 7 tested the predictions of the WAT theory, confirming that the different contexts in which words are acquired lead to the difference typically observed in the literature between concrete and abstract words. The study in chapter 8 on the grounding of abstract concepts tested the mapping of temporal contents on the spatial frame of reference of the mental timeline, showing that metaphoric congruency effects are not automatic, but flexibly mediated by the context determined by the goals of different tasks. The study in chapter 9 investigated the role of iconicity in verbal language, showing sound-to-shape correspondences when every-day object figures, result that validated the reality of sound-symbolism in ecological contexts. On the whole, this evidence favors embodied views of cognition, and supports the hypothesis of a high flexibility of simulation processes. The reported conceptual effects confirm that the context plays a crucial role in affordances emergence, metaphoric mappings activation and language grounding. In conclusion, this thesis highlights that in an embodied perspective cognition is necessarily situated and anchored to a specific context, as it is sustained by the existence of a specific body immersed in a specific environment.
Resumo:
Although errors might foster learning, they can also be perceived as something to avoid if they are associated with negative consequences (e.g., receiving a bad grade or being mocked by classmates). Such adverse perceptions may trigger negative emotions and error-avoidance attitudes, limiting the possibility to use errors for learning. These students’ reactions may be influenced by relational and cultural aspects of errors that characterise the learning environment. Accordingly, the main aim of this research was to investigate whether relational and cultural characteristics associated with errors affect psychological mechanisms triggered by making mistakes. In the theoretical part, we described the role of errors in learning using an integrated multilevel (i.e., psychological, relational, and cultural levels of analysis) approach. Then, we presented three studies that analysed how cultural and relational error-related variables affect psychological aspects. The studies adopted a specific empirical methodology (i.e., qualitative, experimental, and correlational) and investigated different samples (i.e., teachers, primary school pupils and middle school students). Findings of study one (cultural level) highlighted errors acquire different meanings that are associated with different teachers’ error-handling strategies (e.g., supporting or penalising errors). Study two (relational level) demonstrated that teachers’ supportive error-handling strategies promote students’ perceptions of being in a positive error climate. Findings of study three (relational and psychological level) showed that positive error climate foster students’ adaptive reactions towards errors and learning outcomes. Overall, our findings indicated that different variables influence students’ learning from errors process and teachers play an important role in conveying specific meanings of errors during learning activities, dealing with students’ mistakes supportively, and establishing an error-friendly classroom environment.