5 resultados para cloud-based UC services

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le conseguenze del management algoritmico sui lavoratori sono note tra gli studiosi, ma poche ricerche indagano le possibilità di agency, soprattutto a livello individuale, nella gig-economy. A partire dalla quotidianità del lavoro, l’obiettivo è analizzare le forme di agency esercitate dai platform workers nel settore della logistica dell'ultimo miglio. La ricerca si basa su un'etnografia multi-situata condotta in due paesi molto distanti e riguardante due diversi servizi urbani di piattaforma: il food-delivery in Italia (Bologna, Torino) e il ride-hailing in Argentina (Buenos Aires). Nonostante le differenze, il lavoro di campo ha mostrato diverse continuità tra i contesti geografici. Innanzitutto, le tecnologie digitali giocano un ruolo ambivalente nell'ambiente di lavoro: se la tecnologia è usata dalle aziende per disciplinare il lavoro, costituisce però anche uno strumento che può essere impiegato a vantaggio dei lavoratori. Sia nel ride-hailing che nelle piattaforme di food-delivery, infatti, i lavoratori esprimono la loro agency condividendo pratiche di rimaneggiamento e tattiche per aggirare il despotismo algoritmico. In secondo luogo, la ricerca ha portato alla luce una gran varietà di attività economiche sviluppate ai margini dell'economia di piattaforma. In entrambi i casi le piattaforme intersecano vivacemente le economie informali urbane e alimentano circuiti informali di lavoro, come evidenziato dall'elevata presenza di scambi illeciti: ad esempio, vendita di account, hacking-bots, caporalato digitale. Tutt'altro che avviare un processo di formalizzazione, quindi, la piattaforma sussume e riproduce l’insieme di condizioni produttive e riproduttive dell'informalità (viração), offrendo impieghi intermittenti e insicuri a una massa di lavoratori-usa-e-getta disponibile al sottoimpiego. In conclusione, le piattaforme vengono definite come infrastrutture barocche, intendendo con il barocco tanto la natura ibrida dell'azione che mescola forme di neoliberismo-dal-basso con pratiche di solidarietà tra pari, quanto la progressiva ristrutturazione dei processi di accumulazione all’insegna di una rinnovata interdipendenza tra formale e informale nelle infrastrutture del «mondo a domicilio».

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a challenging disease that involves multiple types of biological interactions in different time and space scales. Often computational modelling has been facing problems that, in the current technology level, is impracticable to represent in a single space-time continuum. To handle this sort of problems, complex orchestrations of multiscale models is frequently done. PRIMAGE is a large EU project that aims to support personalized childhood cancer diagnosis and prognosis. The goal is to do so predicting the growth of the solid tumour using multiscale in-silico technologies. The project proposes an open cloud-based platform to support decision making in the clinical management of paediatric cancers. The orchestration of predictive models is in general complex and would require a software framework that support and facilitate such task. The present work, proposes the development of an updated framework, referred herein as the VPH-HFv3, as a part of the PRIMAGE project. This framework, a complete re-writing with respect to the previous versions, aims to orchestrate several models, which are in concurrent development, using an architecture as simple as possible, easy to maintain and with high reusability. This sort of problem generally requires unfeasible execution times. To overcome this problem was developed a strategy of particularisation, which maps the upper-scale model results into a smaller number and homogenisation which does the inverse way and analysed the accuracy of this approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The application of modern ICT technologies is radically changing many fields pushing toward more open and dynamic value chains fostering the cooperation and integration of many connected partners, sensors, and devices. As a valuable example, the emerging Smart Tourism field derived from the application of ICT to Tourism so to create richer and more integrated experiences, making them more accessible and sustainable. From a technological viewpoint, a recurring challenge in these decentralized environments is the integration of heterogeneous services and data spanning multiple administrative domains, each possibly applying different security/privacy policies, device and process control mechanisms, service access, and provisioning schemes, etc. The distribution and heterogeneity of those sources exacerbate the complexity in the development of integrating solutions with consequent high effort and costs for partners seeking them. Taking a step towards addressing these issues, we propose APERTO, a decentralized and distributed architecture that aims at facilitating the blending of data and services. At its core, APERTO relies on APERTO FaaS, a Serverless platform allowing fast prototyping of the business logic, lowering the barrier of entry and development costs to newcomers, (zero) fine-grained scaling of resources servicing end-users, and reduced management overhead. APERTO FaaS infrastructure is based on asynchronous and transparent communications between the components of the architecture, allowing the development of optimized solutions that exploit the peculiarities of distributed and heterogeneous environments. In particular, APERTO addresses the provisioning of scalable and cost-efficient mechanisms targeting: i) function composition allowing the definition of complex workloads from simple, ready-to-use functions, enabling smarter management of complex tasks and improved multiplexing capabilities; ii) the creation of end-to-end differentiated QoS slices minimizing interfaces among application/service running on a shared infrastructure; i) an abstraction providing uniform and optimized access to heterogeneous data sources, iv) a decentralized approach for the verification of access rights to resources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.