3 resultados para chiral guanidines
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the present study, mixed systems composed of SDS in the presence of neutral cyclodextrins were considered. Firstly, the effect of the CDs on the CMC of the surfactant was evaluated by CE experiments. Furthermore, a new CE approach based on electric current measurement was developed for the estimation of the stoichiometry as well as of the binding constants of SDS-CDs complexes. The results of these investigations were compared to those obtained with a different technique, electronic paramagnetic resonance (EPR). The obtained results suggested that methylated CDs, in particular (2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD), strongly affect the micellization of SDS in comparison to the other studied CDs. This effect also paralleled the chiral CD-MEKC performance, as indicated by the enantioresolution of (+/-)-Catechin, which was firstly selected as a model compound representative of important chiral phytomarkers. Then a CD-MEKC system, composed of sodium dodecyl sulfate as surfactant (90 mM) and hydroxypropyl-beta-cyclodextrin (25 mM) as chiral selector, under acidic conditions (25 mM borate – phosphate buffer, pH 2.5) was applied to study the thermal epimerisation of epi-structured catechins, (-)-Epicatechin and (-)-Epigallocatechin, to non epi-structured (-)-Catechin and (-)-Gallocatechin. The latter compounds, being non-native molecules, were for the first time regarded as useful phytomarkers of tea sample degradation. The proposed method was applied to the analysis of more than twenty tea samples of different geographical origins (China, Japan, Ceylon), having undergone different storage conditions and manufacturing processes.
Resumo:
During the course of my Ph.D. in the laboratories directed by Prof. Alfredo Ricci at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, I was involved in the study and the application of a number of organocatalytic systems, all coming from the natural chiral pool. The first part of this thesis will be devoted to new homogeneous organocatalytic reactions promoted by Cinchona alkaloid-based organocatalysts. Quinine based catalysts were found to be a very effective catalyst for Diels-Alder reactions involving 3-vinylindoles. Excellent results in terms of yields and enantioselectivities were achieved, outlining also a remarkable organocatalytic operational mode mimicking enzymatic catalysis. The same reaction with 2-vinylindoles showed a completely different behaviour resulting in an unusual resolution-type process. The asymmetric formal [3+2] cycloaddition with in situ generated N-carbamoyl nitrones using Cinchona-derived quaternary ammonium salts as versatile catalysts under phase transfer conditions, outlines another application in organocatalysis of this class of alkaloids. During the seven months stage in the Prof. Helma Wennemers’ group at the Department of Chemistry of the University of Basel (Switzerland) I have been involved in organocatalysis promoted by oligopeptides. My contribution regarded the 1,4-addition reaction of aldehydes to nitroolefins. In the work performed at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, in collaboration with the ‘Institut Charles Gerhardt-Montpellier, of Montpellier (France) the possibility of performing for the first time heterogeneous organocatalysis by using a natural polysaccharide biopolymer as the source of chirality was disclosed. With chitosan, derived from deacetylation of chitin, a highly enantioselective heterogeneous organocatalytic aldol reaction could be performed. The use of an eco-friendly medium such as water, the recyclability of the catalytic specie and the renewable nature of the polysaccharide are assets of this new approach in organocatalysis and open interesting perspectives for the use of biopolymers.
Resumo:
We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.