9 resultados para cell response

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of vaccines directed against polysaccharide capsules of S. pneumoniae, H. influenzae and N. meningitidis have been of great importance in preventing potentially fatal infections. Bacterial capsular polysaccharides are T-cell-independent antigens that induce specific antibody response characterized by IgM immunoglobulins, with a very low IgG class switched response and lack of capability of inducing a booster response. The inability of pure polysaccharides to induce sustained immune responses has required the development of vaccines containing polysaccharides conjugated to a carrier protein, with the aim to generate T cell help. It is clear that the immunogenicity of glycoconjugate vaccines can vary depending on different factors, e.g. chemical nature of the linked polysaccharide, carrier protein, age of the target population, adjuvant used. The present study analyzes the memory B cell (MBC) response to the polysaccharide and to the carrier protein following vaccination with a glycoconjugate vaccine for the prevention of Group B streptococcus (GBS) infection. Not much is known about the role of adjuvants in the development of immunological memory raised against GBS polysaccharides, as well as about the influence of having a pre-existing immunity against the carrier protein on the B cell response raised against the polysaccharide component of the vaccine. We demonstrate in the mouse model that adjuvants can increase the antibody and memory B cell response to the carrier protein and to the conjugated polysaccharide. We also demonstrate that a pre-existing immunity to the carrier protein favors the development of the antibody and memory B cell response to subsequent vaccinations with a glycoconjugate, even in absence of adjuvants. These data provide a useful insight for a better understanding of the mechanism of action of this class of vaccines and for designing the best vaccine that could result in a productive and long lasting memory response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissue engineering is a discipline that aims at regenerating damaged biological tissues by using a cell-construct engineered in vitro made of cells grown into a porous 3D scaffold. The role of the scaffold is to guide cell growth and differentiation by acting as a bioresorbable temporary substrate that will be eventually replaced by new tissue produced by cells. As a matter or fact, the obtainment of a successful engineered tissue requires a multidisciplinary approach that must integrate the basic principles of biology, engineering and material science. The present Ph.D. thesis aimed at developing and characterizing innovative polymeric bioresorbable scaffolds made of hydrolysable polyesters. The potentialities of both commercial polyesters (i.e. poly-e-caprolactone, polylactide and some lactide copolymers) and of non-commercial polyesters (i.e. poly-w-pentadecalactone and some of its copolymers) were explored and discussed. Two techniques were employed to fabricate scaffolds: supercritical carbon dioxide (scCO2) foaming and electrospinning (ES). The former is a powerful technology that enables to produce 3D microporous foams by avoiding the use of solvents that can be toxic to mammalian cells. The scCO2 process, which is commonly applied to amorphous polymers, was successfully modified to foam a highly crystalline poly(w-pentadecalactone-co-e-caprolactone) copolymer and the effect of process parameters on scaffold morphology and thermo-mechanical properties was investigated. In the course of the present research activity, sub-micrometric fibrous non-woven meshes were produced using ES technology. Electrospun materials are considered highly promising scaffolds because they resemble the 3D organization of native extra cellular matrix. A careful control of process parameters allowed to fabricate defect-free fibres with diameters ranging from hundreds of nanometers to several microns, having either smooth or porous surface. Moreover, versatility of ES technology enabled to produce electrospun scaffolds from different polyesters as well as “composite” non-woven meshes by concomitantly electrospinning different fibres in terms of both fibre morphology and polymer material. The 3D-architecture of the electrospun scaffolds fabricated in this research was controlled in terms of mutual fibre orientation by properly modifying the instrumental apparatus. This aspect is particularly interesting since the micro/nano-architecture of the scaffold is known to affect cell behaviour. Since last generation scaffolds are expected to induce specific cell response, the present research activity also explored the possibility to produce electrospun scaffolds bioactive towards cells. Bio-functionalized substrates were obtained by loading polymer fibres with growth factors (i.e. biomolecules that elicit specific cell behaviour) and it was demonstrated that, despite the high voltages applied during electrospinning, the growth factor retains its biological activity once released from the fibres upon contact with cell culture medium. A second fuctionalization approach aiming, at a final stage, at controlling cell adhesion on electrospun scaffolds, consisted in covering fibre surface with highly hydrophilic polymer brushes of glycerol monomethacrylate synthesized by Atom Transfer Radical Polymerization. Future investigations are going to exploit the hydroxyl groups of the polymer brushes for functionalizing the fibre surface with desired biomolecules. Electrospun scaffolds were employed in cell culture experiments performed in collaboration with biochemical laboratories aimed at evaluating the biocompatibility of new electrospun polymers and at investigating the effect of fibre orientation on cell behaviour. Moreover, at a preliminary stage, electrospun scaffolds were also cultured with tumour mammalian cells for developing in vitro tumour models aimed at better understanding the role of natural ECM on tumour malignity in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this PhD thesis was to evaluate the effect of a sub-lethal HPH treatment on some probiotic properties and on cell response mechanisms of already-known functional strains, isolated from Argentinean dairy products. The results achieved showed that HPH treatments, performed at a sub-lethal level of 50 MPa, increased some important functional and technological characteristics of the considered non intestinal probiotic strains. In particular, HPH could modify cell hydrophobicity, autoaggregation and resistance to acid gastric conditions (tested in in vitro model), cell viability and cell production of positive aroma compounds, during a refrigerate storage in a simulated dairy product. In addition, HPH process was able to increase also some probiotic properties exerted in vivo and tested for two of the considered strains. In fact, HPH-treated cells were able to enhance the number of IgA+ cells more than other not treated cells, although this capacity was time dependent. On the other hand, HPH treatment was able to modify some important characteristics that are linked to the cell wall and, consequently, could alter the adhesion capacity in vivo and the interaction with the intestinal cells. These modifications, involving cell outermost structures, were highlighted also by Trasmission Electron Microscopy (TEM) analysis. In fact, the micrographs obtained showed a significant effect of the pressure treatment on the cell morphology and particularly on the cell wall. Moreover, the results achieved showed that composition of plasma membranes and their level of unsaturation are involved in response mechanisms adopted by cells exposed to the sub-lethal HPH treatment. Although the response to the treatment varied according to the characteristics of individual strains, time of storage and suspension media employed, the results of present study, could be exploited to enhance the quality of functional products and to improve their organoleptic properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hepatitis B x protein (HBx) is a non structural, multifunctional protein of hepatitis B virus (HBV) that modulates a variety of host processes.Due to its transcriptional activity,able to alter the expression of growth-control genes,it has been implicated in hepatocarcinogenesis.Increased expression of HBx has been reported on the liver tissue samples of hepatocellular carcinoma (HCC),and a specific anti-HBx immune response can be detected in the peripheral blood of patients with chronic HBV.However,its role and entity has not been yet clarified.Thus,we performed a cross-sectional analysis of anti-HBx specific T cell response in HBV-infected patients in different stage of disease.A total of 70 HBV-infected subjects were evaluated:15 affected by chronic hepatitis (CH-median age 45 yrs),14 by cirrhosis (median age 55 yrs),11 with dysplastic nodules (median age 64 yrs),15 with HCC (median age 60 yrs),15 with IC(median age 53 yrs).All patients were infected by virus genotype D with different levels of HBV viremia and most of them (91%) were HBeAb positive.The HBx-specific T cell response was evaluated by anti-Interferon (IFN)-gamma Elispot assay after in vitro stimulation of peripheral blood mononuclear cells,using 20 overlapping synthetic peptides covering all HBx protein sequence.HBx-specific IFN-gamma-secreting T cells were found in 6 out of 15 patients with chronic hepatitis (40%), 3 out of 14 cirrhosis (21%), in 5 out of 11 cirrhosis with macronodules (54%), and in 10 out of 15 HCC patients (67%). The number of responding patients resulted significantly higher in HCC than IC (p=0.02) and cirrhosis (p=0.02). Central specific region of the protein x was preferentially recognize,between 86-88 peptides. HBx response does not correlate with clinical feature disease(AFP,MELD).The HBx specific T-cell response seems to increase accordingly to progression of the disease, being increased in subjects with dysplastic or neoplastic lesions and can represent an additional tool to monitor the patients at high risk to develop HCC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NGAL (Neutrophil Gelatinase-associated Lipocalin ) is a protein of lipocalin superfamily. Recent literature focused on its biomarkers function in several pathological condition (acute and chronic kidney damage, autoimmune disease, malignancy). NGAL biological role is not well elucidated. Several are the demonstration of its bacteriostatic role. Recent papers have indeed highlight NGAL role in NFkB modulation. The aim of this study is to understand whether NGAL may exert a role in the activation (modulation) of T cell response through the regulation of HLA-G complex, a mediator of tolerance. From 8 healthy donors we obtained peripheral blood mononuclear cells (PBMCs) and we isolated by centrifugation on a Ficoll gradient. Cells were then treated with four concentrations of NGAL (40-320 ng/ml) with or without iron. We performed flow cytometry analysis and ELISA test. NGAL increased the HLA-G expression on CD4+ T cells, with an increasing corresponding to the dose. Iron effect is not of unique interpretation. NGAL adiction affects regulatory T cells increasing in vitro expansion of CD4+ CD25+ FoxP3+ cells. Neutralizing antibody against NGAL decreased HLA-G expression and reduced significantly CD4+ CD25+ FoxP3+ cells percentage. In conclusion, we provided in vitro evidence of NGAL involvement in cellular immunity. The potential role of NGAL as an immunomodulatory molecule has been evaluated: it has been shown that NGAL plays a pivotal role in the induction of immune tolerance up regulating HLA-G and T regulatory cells expression in healthy donors. As potential future scenario we highlight the in vivo role of NGAL in immunology and immunomodulation, and its possible relationship with immunosuppressive therapy efficacy, tolerance induction in transplant patients, and/or in other immunological disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regenerative medicine and tissue engineering attempt to repair or improve the biological functions of tissues that have been damaged or have ceased to perform their role through three main components: a biocompatible scaffold, cellular component and bioactive molecules. Nanotechnology provide a toolbox of innovative scaffold fabrication procedures in regenerative medicine. In fact, nanotechnology, using manufacturing techniques such as conventional and unconventional lithography, allows fabricating supports with different geometries and sizes as well as displaying physical chemical properties tunable over different length scales. Soft lithography techniques allow to functionalize the support by specific molecules that promote adhesion and control the growth of cells. Understanding cell response to scaffold, and viceversa, is a key issue; here we show our investigation of the essential features required for improving the cell-surface interaction over different scale lengths. The main goal of this thesis has been to devise a nanotechnology-based strategy for the fabrication of scaffolds for tissue regeneration. We made four types of scaffolds, which are able to accurately control cell adhesion and proliferation. For each scaffold, we chose properly designed materials, fabrication and characterization techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Theory of aging postulates that aging is a remodeling process where the body of survivors progressively adapts to internal and external damaging agents they are exposed to during several decades. Thus , stress response and adaptation mechanisms play a fundamental role in the aging process where the capability of adaptating effects, certainly, also is related the lifespan of each individual. A key gene linking aging to stress response is indeed p21, an induction of cyclin-dependent kinase inhibitor which triggers cell growth arrest associated with senescence and damage response and notably is involved in the up-regulation of multiple genes that have been associated with senescence or implicated in age-related . This PhD thesis project that has been performed in collaboration with the Roninson Lab at Ordway Research Institute in Albany, NY had two main aims: -the testing the hypothesis that p21 polymorphisms are involved in longevity -Evaluating age-associated differences in gene expression and transcriptional response to p21 and DNA damage In the first project, trough PCR-sequencing and Sequenom strategies, we we found out that there are about 30 polymorphic variants in the p21 gene. In addition, we found an haplotpype located in -5kb region of the p21 promoter whose frequency is ~ 2 fold higher in centenarians than in the general population (Large-scale analysis of haplotype frequencies is currently in progress). Functional studies I carried out on the promoter highilighted that the ―centenarian‖ haplotype doesn’t affect the basal p21 promoter activity or its response to p53. However, there are many other possible physiological conditions in which the centenarian allele of the p21 promoter may potentially show a different response (IL6, IFN,progesterone, vitamin E, Vitamin D etc). In the second part, project #2, trough Microarrays we seeked to evaluate the differences in gene expression between centenarians, elderly, young in dermal fibroblast cultures and their response to p21 and DNA damage. Microarray analysis of gene expression in dermal fibroblast cultures of individuals of different ages yielded a tentative "centenarian signature". A subset of genes that were up- or downregulated in centenarians showed the same response to ectopic expression of p21, yielding a putative "p21-centenarian" signature. Trough RQ-PCR (as well Microarrays studies whose analysis is in progress) we tested the DNA damage response of the p21-centenarian signature genes showing a correlation stress/aging in additional sets of young and old samples treated with p21-inducing drug doxorubicin thus finding for a subset of of them , a response to stress age-related.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. The second part of this work is the clinical, molecular and functional description of a paradigmatic case of primary refractory Burkitt lymphoma characterized by spatial intratumor heterogeneity for the TP53 mutational status, high expression levels of genomic instability and DDR activation markers, primary resistance to chemotherapy and exquisite sensitivity to DDR inhibitors.