20 resultados para cell lung-cancer

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Human small cell lung cancer (SCLC) accounting for approximately 15-20% of all lung cancers, is an aggressive tumor with high propensity for early regional and distant metastases. Although the initial tumor rate response to chemotherapy is very high, SCLC relapses after approximately 4 months in ED and 12 months in LD. Basal cell carcinoma (BCC) is the most prevalent cancer in the western world, and its incidence is increasing worldwide. This type of cancer rarely metastasizes and the death rate is extraordinary low. Surgery is curative for most of the patients, but for those that develop locally advanced or metastatic BCC there is currently no effective treatment. Both types of cancer have been deeply investigated and genetic alterations, MYCN amplification (MA) among the most interesting, have been found. These could become targets of new pharmacological therapies. Procedures. We created and characterized novel BLI xenograft orthotopic mouse models of SCLC to evaluate the tumor onset and progression and the efficacy of new pharmacological strategies. We compared an in vitro model with a transgenic mouse model of BCC, to investigate and delineate the canonical HH signalling pathway and its connections with other molecular pathways. Results and conclusions. The orthotopic models showed latency and progression patterns similar to human disease. Chemotherapy treatments improved survival rates and validated the in vivo model. The presence of MA and overexpression were confirmed in each model and we tested the efficacy of a new MYCN inhibitor in vitro. Preliminar data of BCC models highlighted Hedgehog pathway role and underlined the importance of both in vitro and in vivo strategies to achieve a better understanding of the pathology and to evaluate the applicability of new therapeutic compounds

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-small-cell lung cancer (NSCLC) represents the leading cause of cancer death worldwide, and 5-year survival is about 16% for patients diagnosed with advanced lung cancer and about 70-90% when the disease is diagnosed and treated at earlier stages. Treatment of NSCLC is changed in the last years with the introduction of targeted agents, such as gefitinib and erlotinib, that have dramatically changed the natural history of NSCLC patients carrying specific mutations in the EGFR gene, or crizotinib, for patients with the EML4-ALK translocation. However, such patients represent only about 15-20% of all NSCLC patients, and for the remaining individuals conventional chemotherapy represents the standard choice yet, but response rate to thise type of treatment is only about 20%. Development of new drugs and new therapeutic approaches are so needed to improve patients outcome. In this project we aimed to analyse the antitumoral activity of two compounds with the ability to inhibit histone deacethylases (ACS 2 and ACS 33), derived from Valproic Acid and conjugated with H2S, in human cancer cell lines derived from NSCLC tissues. We showed that ACS 2 represents the more promising agent. It showed strong antitumoral and pro-apoptotic activities, by inducing membrane depolarization, cytocrome-c release and caspase 3 and 9 activation. It was able to reduce the invasive capacity of cells, through inhibition of metalloproteinases expression, and to induce a reduced chromatin condensation. This last characteristic is probably responsible for the observed high synergistic activity in combination with cisplatin. In conclusion our results highlight the potential role of the ACS 2 compound as new therapeutic option for NSCLC patients, especially in combination with cisplatin. If validated in in vivo models, this compound should be worthy for phase I clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Despite there are already many studies on robotic surgery as minimally invasive approach for non-small cell lung cancer (NSCLC) patients, the use of this technique for stage III disease is still poorly described. These are the preliminary results of our prospective study on safety and effectiveness of robotic approach in patients with locally advanced NSCLC, in terms of postoperative complications and oncological outcome. Methods: Since 2016, we prospectively investigated, using standardized questionnaire and protocol, 21 consecutive patients with NSCLC stage IIIA-pN2 (diagnosed by EBUS-TBNA) who underwent lobectomy and radical lymph node dissection with robotic approach after induction treatment. Then, we performed a matched case-control study with 54 patients treated with open surgery during the same period of time, with similar age, clinical and pathological tumor stage. Results: The individual matched population was composed of 14 robot-assisted thoracic surgery and 14 patients who underwent open surgery. The median time range of resection was inferior in the open group compared to robotic lobectomy (148 vs 229 minutes; P=0.002). Lymph nodes resection and positivity were not statistically significantly different (p=0.66 and p=0.73 respectively). No difference was observed also for PFS (P=0.99) or OS (P=0.94). Conclusions: Our preliminary results demonstrated that the early outcomes and oncological results of N2-patients after robotic lobectomy were similar to open surgery. Considering the advantages of minimally invasive surgery, robotic assisted lobectomy should be a safe approach also to patients with local advanced disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor diagnosed at extended disease SCLC (ES-SCLC) stage in about 70% of cases. The new standard of treatment for patients with ES-SCLC is a combination of platinum-etoposide chemotherapy and atezolizumab or durvalumab, two programmed cell death ligand 1 (PD-L1) inhibitory monoclonal antibodies (mAb). However, the benefit derived from the addition of PD-L1 inhibitors to chemotherapy in ES-SCLC was limited and restricted to a subset of patients. The vascular endothelial growth factor (VEGF) is the most important pro-angiogenic factor implicated in cancer angiogenesis, which is abundant in SCLC and associated with poor prognosis. Antiangiogenic agents, such as bevacizumab, a humanized mAb against VEGF, added to platinum-etoposide chemotherapy improved progression-free survival in SCLC in two trials, but it did not translate into a benefit in overall survival. Nevertheless, VEGF has also acts as a mediator of an immunosuppressive microenvironment and its inhibition can revert the immune-suppressive tumor microenvironment and potentially enhance the efficacy of immunotherapies. Based on available preclinical data, we hypothesized that VEGF inhibition by bevacizumab could improve atezolizumab efficacy in a synergistic way and designed a phase II single-arm trial of bevacizumab in combination with carboplatin, etoposide, and atezolizumab as first-line treatment in ES-SCLC. The trial, which is still ongoing, enrolled 53 patients, including those with treated or untreated asymptomatic brain metastases (provided criteria are met), who received atezolizumab, bevacizumab, carboplatin and etoposide for 4-6 cycles (induction phase), followed by maintenance with atezolizumab and bevacizumab for a maximum of 18 total cycles or until disease progression, patient refusal, unacceptable toxicity. The evaluation of efficacy of the experimental combination in terms of 1-year overall survival rate is not yet mature (primary objective of the trial). The combination was feasible and the toxicity profile manageable (secondary objective of the trial).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) is the most aggressive form of lung cancer, characterized by rapid growth, early metastasis and acquired drug resistance. SCLC is usually sensitive to initial treatment, however, most patients relapse within few months; thus more effective therapies are urgently needed. Key genetic alterations very frequently observed in SCLC include loss of TP53 and RB1 and mutations in the MYC family genes (MYC, MYCL or MYCN). One of them is amplified and overexpressed in a mutually exclusive manner and represents the most prominent activating oncogene alteration in this malignancy. In particular, MYCN amplification is associated with tumor progression, treatment failure and poor prognosis. Given the role of MYCN in SCLC and its restricted expression profile, MYCN represents a promising therapeutic target; although it is considered undruggable by traditional approaches. An innovative approach to target the oncogene concerns specific MYCN expression inhibition, acting directly at the level of DNA, through an antigene peptide nucleic acid (agPNA) oligonucleotide, called BGA002. This thesis focused on the study of BGA002, as a possible targeted therapeutic strategy for the treatment of MYCN-related SCLC. In this context, BGA002 proved to be a specific and highly effective inhibitor. Furthermore, MYCN silencing induced alterations in many downstream pathways and led to apoptosis, in concomitance with autophagy reactivation. Moreover, systemic administration of BGA002 was effective in vivo as well, significantly increasing survival in MNA mouse models, even in the scenario of multidrug-resistance. In addition, BGA002 treatment successfully reduced N-Myc protein expression and, more importantly, caused a massive diminishment in tumor vascularization in the multidrug-resistant model. Overall, these results proved that MYCN inhibition by BGA002 may represent a new promising precision medicine approach, to treat MYCN-related SCLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune checkpoint inhibitors (ICI) that target PD-1/PD-L1 have recently emerged as an integral component of front-line treatment in metastatic NSCLC patients. The PD-1 inhibitor pembrolizumab is approved as monotherapy for advanced NSCLC with a PD-L1 tumor proportion score (TPS) of ≥1% and in combination with platinum doublet chemotherapy regardless of PD-L1 expression level. However, responses to either regimen occur in only a minority of cases, and PD-L1 TPS is limited as a biomarker in predicting whether a cancer will respond to PD-1 inhibition alone or would be more likely to benefit from PD-1 inhibition plus chemotherapy. Additional biomarkers of immunotherapy efficacy, such as tumor mutational burden (TMB), have not been incorporated into routine clinical practice for treatment selection. The identification of patients who have the greatest likelihood of responding to immunotherapies is critical for guiding treatment decisions. IN addition, early indicators of response could theoretically prevent patients from staying on an ineffective therapy where they might experience complications due to disease progression or develop toxicities from unnecessary exposure to an inactive agent. The aim of this research project is to investigate the clinicopathologic and molecular determinant of response/resistance to the currently available immune checkpoint inhibitors, in order to identify therapeutic vulnerabilities that can be exploited to improve the clinical outcomes of patients with advanced NSCLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The frontline management of non-oncogene addicted non-small cell lung cancer (NSCLC) involves immunotherapy (ICI) alone or combined with chemotherapy (CT-ICI). As therapeutic options expand, refining NSCLC genotyping gains paramount importance. The dynamic landscape of KRAS-positive NSCLC presents a spectrum of treatment options, including ICI, targeted therapy, and combination strategies currently under investigation. Methods: The two-year RASLUNG project, featuring both retrospective and prospective cohorts, aimed to analyze the predictive and prognostic impact of KRAS mutations on tumor tissue and circulating DNA (ctDNA). Secondary objectives included assessing the roles of co-mutations and longitudinal changes in KRAS mutant copies concerning treatment response and survival outcomes. An external validation study confirmed the prognostic or predictive significance of co-mutations. Results: In the prospective cohort (n=24), patients with liver metastases exhibited significantly elevated ctDNA levels(p=0.01), while those with >3 metastatic sites showed increased Allele Frequency (AF) (P=0.002). Median overall survival (OS) was 7.5 months, progression-free survival (PFS) was 4.0 months, and the objective response rate (ORR) was 33.3%. Higher AF correlated with an increased risk of death (HR 1.04, p = 0.03), though not progression. Notably, a reduction in plasma DNA levels was significantly associated with objective response(p=0.01). In the retrospective cohort, KRAS and STK11 mutations co-occurred in 14/21 patients (p=0.053). STK11 mutations were independently detrimental to OS (HR 1.97, p=0.025) after adjusting for various factors. KRAS tissue AF did not correlate with OS or PFS. Within the validation dataset, STK11 mutations were significantly associated with an increased risk of death in univariate (HR 2.01, p<0.001) and multivariate models (HR 1.66, p=0.001) after adjustments. Conclusion: The RAS-Lung Project, employing innovative genotyping techniques, underscores the significance of comprehensive NSCLC genotyping. Tailored next-generation sequencing (NGS) and ctDNA monitoring may offer potential benefits in navigating the evolving landscape of KRAS-positive NSCLC treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite extensive research and introduction of innovative therapy, lung cancer prognosis remains poor, with a five years survival of only 17%. The success of pharmacological treatment is often impaired by drug resistance. Thus, the characterization of response mechanisms to anti-cancer compounds and of the molecular mechanisms supporting lung cancer aggressiveness are crucial for patient’s management. In the first part of this thesis, we characterized the molecular mechanism behind resistance of lung cancer cells to the Inhibitors of the Bromodomain and Extraterminal domain containing Proteins (BETi). Through a CRISPR/Cas9 screening we identified three Hippo Pathway members, LATS2, TAOK1 and NF2 as genes implicated in susceptibility to BETi. These genes confer sensitivity to BETi inhibiting TAZ activity. Conversely, TAZ overexpression increases resistance to BETi. We also displayed that BETi downregulate both YAP, TAZ and TEADs expression in several cancer cell lines, implying a novel BETi-dependent cytotoxic mechanism. In the second part of this work, we attempted to characterize the crosstalk between the TAZ gene and its cognate antisense long-non coding RNA (lncRNA) TAZ-AS202 in lung tumorigenesis. As for TAZ downregulation, TAZ-AS202 silencing impairs NSCLC cells proliferation, migration and invasion, suggesting a pro-tumorigenic function for this lncRNA during lung tumorigenesis. TAZ-AS202 regulates TAZ target genes without altering TAZ expression or localization. This finding implies an uncovered functional cooperation between TAZ and TAZ-AS202. Moreover, we found that the EPH-ephrin signaling receptor EPHB2 is a downstream effector affected by both TAZ and TAZ-AS202 silencing. EPHB2 downregulation significantly attenuates cells proliferation, migration and invasion, suggesting that, at least in part, TAZ-AS202 and TAZ pro-oncogenic activity depends on EPH-ephrin signaling final deregulation. Finally, we started to dissect the mechanism underlying the TAZ-AS202 regulatory activity on EPHB2 in lung cancer, which may involve the existence of an intermediate transcription factor and is the object of our ongoing research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il carcinoma polmonare rappresenta un problema socio-sanitario di grande rilievo, essendo la prima causa di morte per neoplasia. Il carcinoma polmonare non a piccole cellule (non small cell lung cancer - NSCLC) rappresenta la variante istologica più frequente (80% dei casi di tumore polmonare). Al momento della diagnosi circa il 60-70% dei pazienti presenta una malattia in stadio avanzato o metastatico non essendo suscettibile di trattamento chirurgico. Per questi pazienti il trattamento chemioterapico determina un prolungamento della sopravvivenza e un miglioramento della qualità  della vita rispetto alla sola terapia di supporto, identificandosi come standard terapeutico. L'individuazione del migliore trattamento chemioterapico per questo subset di pazienti rappresenta pertanto una delle principali sfide della ricerca oncologica. I regimi polichemioterapici si possono dividere schematicamente in tre generazioni in relazione all'introduzione nel corso degli anni di nuovi agenti chemioterapici. Con l'avvento dei regimi di terza generazione, il trattamento del NSCLC avanzato sembra aver raggiunto un plateau, mancando infatti chiare dimostrazioni di superiorità  di un regime di ultima generazione rispetto ad un altro. Tra questi l'associazione cisplatino e gemcitabina rappresenta uno dei regimi standard più utilizzati in considerazione del suo favorevole rapporto costo-beneficio. Al fine di migliorare i risultati del trattamento chemioterapico in termini di attività  ed efficacia, una possibilità  consiste nell'individuazione di parametri predittivi che ci consentano di identificare il miglior trattamento per il singolo paziente. Tra i vari parametri predittivi valutabili, un crescente interesse è stato rivolto a quelli di carattere genetico, anche grazie all'avvento di nuove tecniche di biologia molecolare e al sequenziamento del genoma umano che ha dato nuovo impulso a studi di farmacogenetica e farmacogenomica. Sulla base di queste considerazioni, in questa tesi è stato effettuato uno studio mirato a valutare l'espressione di determinanti molecolari coinvolti nel meccanismo di azione di gemcitabina e cisplatino in pazienti affetti dai due tipi istologici principali di NSCLC, adenocarcinomi e carcinomi squamocellulari. Lo studio dei livelli di espressione genica è stata effettuata in tessuti di 69 pazienti affetti da NSCLC arruolati presso l'Istituto Europeo di Oncologia di Milano. In particolare, mediante Real Time PCR è stata valutata l'espressione genica di ERCC1, hENT1, dCK, 5'-NT, CDA, RRM1 e RRM2 in 85 campioni isolati con microdissezione da biopsie provenienti dai tessuti polmonari normali o tumorali o dalle metastasi linfonodali. Le analisi di questi tessuti hanno mostrato differenze significative per i pattern di espressione genica di diversi determinanti molecolari potenzialmente utile nel predire l'efficacia di gemcitabina/cisplatino e per personalizzare i trattamenti in pazienti affetti da cancro. In conclusione, l'evoluzione delle tecniche di biologia molecolare promossa dagli studi di farmacogenetica racchiude in sè notevoli potenzialità  per quanto concerne l'ideazione di nuovi protocolli terapeutici. Identificando le caratteristiche genotipiche e i livelli di espressione geniche di determinanti molecolari implicati nella risposta ai farmaci potremmo infatti predisporre delle mappe di chemiosensibilità-chemioresistenza per ciascun paziente, nell'ottica di approntare di volta in volta le più appropriate terapie antitumorali in base alle caratteristiche genetiche del paziente e della sua patologia neoplastica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obiettivi. Valutare l’angiogenesi tumorale mediante la Microvessel density (MVD) come fattore predittivo di mortalità per tumore polmonare non a piccole cellule (NSCLC) pT1aN0M0 trattato chirurgicamente. Metodi. I dati demografici, clinici e istopatologici sono stati registrati per 82 pazienti (60 maschi, 22 femmine) sottoposti a resezione chirurgica in due diverse Chirurgie Toraciche tra gennaio 2002 e dicembre 2007 per tumori polmonari non a piccole cellule pT1AN0M0. La MVD è stata valutata mediante il conteggio visivo dei microvasi positivi alla colorazione immunoistochimica con anticorpo monoclonale anti-CD31 e definita come il numero medio di microvasi per 1 mm2 di campo ottico. Risultati. Sono state eseguite 59 lobectomie (72%) e 23 resezioni sublobari (28%). Reperti istopatologici: 43 adenocarcinomi (52%) e 39 neoplasie non- adenocarcinoma (48%) pT1aN0M0; MVD media: 161 (CD31/mm2); mediana: 148; range 50-365, cut-off=150. Una MVD elevata (> 150 CD31/mm2) è stata osservata in 40 pazienti (49%), una MVD ridotta ( ≤ 150 CD31/mm2 ) in 42 pazienti (51%). Sopravvivenze a 5 anni: 70 % e 95%, rispettivamente per il gruppo ad elevata MVD vs il gruppo a ridotta MVD con una p = 0,0041, statisticamente significativa. Il tipo di resezione chirurgica, il diametro del tumore, le principali comorbidità e l’istotipo nono sono stati fattori predittivi significativi di mortalità correlata alla malattia. La MVD è risultata essere superiore nel gruppo “Adenocarcinoma” (MVD mediana=180) rispetto al gruppo “Non-Adenocarcinoma (MVD mediana=125), con un test di Mann-Whitney statisticamente significativo (p < 0,0001). Nel gruppo “Adenocarcinoma” la sopravvivenza a 5 anni è stata del 66% e 93 %, rispettivamente per i pazienti con MVD elevata e ridotta (p = 0.043. Conclusioni. Il nostro studio ha mostrato che la Microvessel density valutata con la colorazione immunoistochimica per CD31 ha un valore prognostico rilevante nel carcinoma polmonare in stadio precoce pT1aN0M0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcribed ultraconserved regions (T-UCRs) are a group of long non-coding RNAs involved in human carcinogenesis. The factors regulating the expression of T-UCRs and their mechanism of action in human cancers are unknown. In this work it was shown that high expression of uc.339 associates with lower survival in 204 non-small cell lung cancer (NSCLC) patients. Moreover, it was shown that uc.339 found up-regulated in archival NSCLC samples, acts as a decoy RNA for miR-339-3p, -663-3p and -95-5p. So, Cyclin E2, a direct target of three microRNAs is up-regulated, inducing cancer growth and migration. Evidence of this mechanism was provided from cell lines and primary samples confirming that TP53 directly regulates uc.339. These results support a key role for uc.339 in lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting “in trans” with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As) or a transmembrane segment (ephrin-Bs), which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral “cis” associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis-inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans (Falivelli et al. 2013).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Caveolin-1 (Cav-1), the essential structural constituent of caveolae, which are flask-shaped invaginations of the plasma membrane, has been found to play a key role in the modulation of cell proliferation and cancer development. It seems to act as an oncosuppressor or a promoter of growth, depending on the histotype, stage and grade of each tumour. The aim of this study was to analyze the effects of Caveolin-1 gene silencing on the proliferation of human lung cancer and osteosarcoma in vitro. Our data show that Cav-1 silencing blocks the growth in both metastatic lung cancer cell lines analyzed, suggesting a proliferation promoting action of the protein in these cells. A marked decrease of phospho-Akt, phospho-ERK, STAT3, cyclin D1, CDK4 and consequently of phospho-Rb expression was evident in the cells treated with Cav-1 siRNA. With regards to osteosarcoma, we demonstrated that the suppression of Cav-1 results in the blocking of MG-63 and in the slowing down of HOS proliferation, suggesting a role for Cav-1 as a promoter of tumour growth in these cell lines. A marked decrease of phospho-Akt, cyclin E, CDK2 and phospho-Rb and an increase of p21 expression levels were evident in the cells treated with Cav-1 siRNA. Our results suggest two new cell cycle inhibiting pathways, mediated by Cav-1 knock-down, and provide new insights into the molecular mechanisms underlying the tumour-promoting role of Cav-1 in lung cancer and osteosarcoma. In this work we also investigated the role of estrogens in lung cancer and the functional cross-talk between Cav-1 and estrogens/estrogen receptors in it. Our results show that 17β-estradiol induces proliferation either in RAL or in SCLC-R1 cells and that both cell lines are sensitive to 4-OHT antiproliferative effect. The sensitivity to estrogen stimulation seems to be gender- and/or histological type-independent in metastatic lung cancer in vitro.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gli impianti di incenerimento di rifiuti solidi suscitano preoccupazione nella popolazione per i possibili effetti avversi associati all’esposizione. Gli effetti delle polveri sottili (PM2.5), generate dai processi di combustione, sulla salute umana includono l’insorgenza di patologie a carico del sistema respiratorio e cardiovascolare e l’aumento della mortalità per malattie polmonari e probabilmente cancro al polmone. Lo scopo della tesi è quello di valutare il profilo tossicologico e cancerogeno del particolato atmosferico in prossimità dell’inceneritore di Bologna rispetto alle aree adiacenti mediante l’utilizzo di test alternativi alle metodologie in vivo, come il test di trasformazione cellulare e approcci di tossicogenomica (soprattutto trascrittomica) oltre alla valutazione della variazione del rischio cancerogeno indotto dall’esposizione di PM2.5 in diversi siti (massima ricaduta, controllo, fondo urbano e fondo rurale) e in differenti periodi di campionamento (estate 2008 e inverno 2009). Gli estratti di PM2.5 relativi alla stagione invernale sono risultati più tossici rispetto ai campioni estivi, che inducono tossicità soprattutto alle alte dosi. Per i campioni invernali il numero medio di colonie di cellule BALB/c 3T3 A31-1-1 risulta ridotto in modo significativo anche per le dosi più basse saggiate indipendentemente dal sito di provenienza. Tutti i campioni analizzati sono risultati negativi nel test di trasformazione cellulare in vitro. L’analisi dell’espressione genica delle cellule BALB/c 3T3 A31-1-1, in seguito all’esposizione agli estratti di PM2.5, ha mostrato un effetto stagionale evidente. Relativamente ai campioni invernali è stato evidenziato un maggior effetto tossico da parte del sito di controllo rispetto alla massima ricaduta, poiché nel sito di controllo risultano attivati marcatori di morte cellulare per apoptosi. La valutazione del rischio cancerogeno in tutti i siti valutati non mostra situazioni preoccupanti legate alla predizione di eccessi di rischio di tumori imputabili all’attività dell’inceneritore in quanto le stime di rischio non eccedono mai il valore limite riportato in letteratura.