3 resultados para cathelicidin-BF

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent years observed massive growth in wearable technology, everything can be smart: phones, watches, glasses, shirts, etc. These technologies are prevalent in various fields: from wellness/sports/fitness to the healthcare domain. The spread of this phenomenon led the World-Health-Organization to define the term 'mHealth' as "medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants, and other wireless devices". Furthermore, mHealth solutions are suitable to perform real-time wearable Biofeedback (BF) systems: sensors in the body area network connected to a processing unit (smartphone) and a feedback device (loudspeaker) to measure human functions and return them to the user as (bio)feedback signal. During the COVID-19 pandemic, this transformation of the healthcare system has been dramatically accelerated by new clinical demands, including the need to prevent hospital surges and to assure continuity of clinical care services, allowing pervasive healthcare. Never as of today, we can say that the integration of mHealth technologies will be the basis of this new era of clinical practice. In this scenario, this PhD thesis's primary goal is to investigate new and innovative mHealth solutions for the Assessment and Rehabilitation of different neuromotor functions and diseases. For the clinical assessment, there is the need to overcome the limitations of subjective clinical scales. Creating new pervasive and self-administrable mHealth solutions, this thesis investigates the possibility of employing innovative systems for objective clinical evaluation. For rehabilitation, we explored the clinical feasibility and effectiveness of mHealth systems. In particular, we developed innovative mHealth solutions with BF capability to allow tailored rehabilitation. The main goal that a mHealth-system should have is improving the person's quality of life, increasing or maintaining his autonomy and independence. To this end, inclusive design principles might be crucial, next to the technical and technological ones, to improve mHealth-systems usability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mucosal melanoma of the head and neck region (MM-H&N) is a rare disease, characterized by a poor prognosis and limited therapeutic strategies, especially regarding targeted therapy (lower rate of targetable mutations compared to cutaneous melanoma) and immunotherapy (lack of diagnostic tools able to predict the response). Meanwhile, bright-field multiplex immunohistochemistry (BF-mIHC) is emerging as a promising tool for characterizing tumor microenvironment (TME) and predicting response to immunotherapy in several tumors, including melanoma. This PhD project aims to develop a BF-mIHC protocol to evaluate the TME in MM-H&N, analyze the correlation between immune markers/immune profiles and MM-H&N features (clinicopathologic and molecular), and find new biomarkers useful for prognostic-therapeutic stratification of these patients. Specific aims are: (I) describe the clinicopathological features of MM-H&N; (II) analyze the molecular status of MM-H&N and correlate it with the clinicopathological features; (III) analyze the molecular status of multiple specimens from the same patient to verify whether molecular heterogeneity of MM-H&N could affect the results with relevant prognostic-therapeutic implications; (IV) develop a BF-mIHC protocol to study TME in MM-H&N; (V) analyze the correlation between immune markers/immune profiles and MM-H&N features (clinicopathologic and molecular) to test whether BF-mIHC could be a promising tool for prognostic-therapeutic characterization of these patients.