3 resultados para buck converter,conducted emission,2-150kHz,DC-microgrid

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world is quickly changing, and the field of power electronics assumes a pivotal role in addressing the challenges posed by climate change, global warming, and energy management. The introduction of wide-bandgap semiconductors, particularly gallium nitride (GaN), in contrast to the traditional silicon technology, is leading to lightweight, compact and evermore efficient circuitry. However, GaN technology is not mature yet and still presents reliability issues which constrain its widespread adoption. Therefore, GaN reliability is a hotspot for the research community. Extensive efforts have been directed toward understanding the physical mechanisms underlying the performance and reliability of GaN power devices. The goal of this thesis is to propose a novel in-circuit degradation analysis in order to evaluate the long-term reliability of GaN-based power devices accurately. The in-circuit setup is based on measure-stress-measure methodology where a high-speed synchronous buck converter ensures the stress while the measure is performed by means of full I-V characterizations. The switch from stress mode to characterization mode and vice versa is automatic thanks to electromechanical and solid-state relays controlled by external unit control. Because these relays are located in critical paths of the converter layout, the design has required a comprehensive study of electrical and thermal problems originated by the use of GaN technology. In addition, during the validation phase of the converter, electromagnetic-lumped-element circuit simulations are carried out to monitor the signal integrity and junction temperature of the devices under test. However, the core of this work is the in-circuit reliability analysis conducted with 80 V GaN HEMTs under several operating conditions of the converter in order to figure out the main stressors which contribute to the device's degradation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new conversion structure for three-phase grid-connected photovoltaic (PV) generation plants is presented and discussed in this Thesis. The conversion scheme is based on two insulated PV arrays, each one feeding the dc bus of a standard 2-level three-phase voltage source inverter (VSI). Inverters are connected to the grid by a traditional three-phase transformer having open-end windings at inverters side and either star or delta connection at the grid side. The resulting conversion structure is able to perform as a multilevel VSI, equivalent to a 3-level inverter, doubling the power capability of a single VSI with given voltage and current ratings. Different modulation schemes able to generate proper multilevel voltage waveforms have been discussed and compared. They include known algorithms, some their developments, and new original approaches. The goal was to share the grid power with a given ratio between the two VSI within each cycle period of the PWM, being the PWM pattern suitable for the implementation in industrial DSPs. It has been shown that an extension of the modulation methods for standard two-level inverter can provide a elegant solution for dual two-level inverter. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single MPPT controller. A particular MPPT algorithm has been successfully tested, based on the comparison of the operating points of the two PV arrays. The small deliberately introduced difference between two operating dc voltages leads towards the MPP in a fast and accurate manner. Either simulation or experimental tests, or even both, always accompanied theoretical developments. For the simulation, the Simulink tool of Matlab has been adopted, whereas the experiments have been carried out by a full-scale low-voltage prototype of the whole PV generation system. All the research work was done at the Lab of the Department of Electrical Engineering, University of Bologna.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority.