5 resultados para boundary locking

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the end of the 19th century, geodesy has contributed greatly to the knowledge of regional tectonics and fault movement through its ability to measure, at sub-centimetre precision, the relative positions of points on the Earth’s surface. Nowadays the systematic analysis of geodetic measurements in active deformation regions represents therefore one of the most important tool in the study of crustal deformation over different temporal scales [e.g., Dixon, 1991]. This dissertation focuses on motion that can be observed geodetically with classical terrestrial position measurements, particularly triangulation and leveling observations. The work is divided into two sections: an overview of the principal methods for estimating longterm accumulation of elastic strain from terrestrial observations, and an overview of the principal methods for rigorously inverting surface coseismic deformation fields for source geometry with tests on synthetic deformation data sets and applications in two different tectonically active regions of the Italian peninsula. For the long-term accumulation of elastic strain analysis, triangulation data were available from a geodetic network across the Messina Straits area (southern Italy) for the period 1971 – 2004. From resulting angle changes, the shear strain rates as well as the orientation of the principal axes of the strain rate tensor were estimated. The computed average annual shear strain rates for the time period between 1971 and 2004 are γ˙1 = 113.89 ± 54.96 nanostrain/yr and γ˙2 = -23.38 ± 48.71 nanostrain/yr, with the orientation of the most extensional strain (θ) at N140.80° ± 19.55°E. These results suggests that the first-order strain field of the area is dominated by extension in the direction perpendicular to the trend of the Straits, sustaining the hypothesis that the Messina Straits could represents an area of active concentrated deformation. The orientation of θ agree well with GPS deformation estimates, calculated over shorter time interval, and is consistent with previous preliminary GPS estimates [D’Agostino and Selvaggi, 2004; Serpelloni et al., 2005] and is also similar to the direction of the 1908 (MW 7.1) earthquake slip vector [e.g., Boschi et al., 1989; Valensise and Pantosti, 1992; Pino et al., 2000; Amoruso et al., 2002]. Thus, the measured strain rate can be attributed to an active extension across the Messina Straits, corresponding to a relative extension rate ranges between < 1mm/yr and up to ~ 2 mm/yr, within the portion of the Straits covered by the triangulation network. These results are consistent with the hypothesis that the Messina Straits is an important active geological boundary between the Sicilian and the Calabrian domains and support previous preliminary GPS-based estimates of strain rates across the Straits, which show that the active deformation is distributed along a greater area. Finally, the preliminary dislocation modelling has shown that, although the current geodetic measurements do not resolve the geometry of the dislocation models, they solve well the rate of interseismic strain accumulation across the Messina Straits and give useful information about the locking the depth of the shear zone. Geodetic data, triangulation and leveling measurements of the 1976 Friuli (NE Italy) earthquake, were available for the inversion of coseismic source parameters. From observed angle and elevation changes, the source parameters of the seismic sequence were estimated in a join inversion using an algorithm called “simulated annealing”. The computed optimal uniform–slip elastic dislocation model consists of a 30° north-dipping shallow (depth 1.30 ± 0.75 km) fault plane with azimuth of 273° and accommodating reverse dextral slip of about 1.8 m. The hypocentral location and inferred fault plane of the main event are then consistent with the activation of Periadriatic overthrusts or other related thrust faults as the Gemona- Kobarid thrust. Then, the geodetic data set exclude the source solution of Aoudia et al. [2000], Peruzza et al. [2002] and Poli et al. [2002] that considers the Susans-Tricesimo thrust as the May 6 event. The best-fit source model is then more consistent with the solution of Pondrelli et al. [2001], which proposed the activation of other thrusts located more to the North of the Susans-Tricesimo thrust, probably on Periadriatic related thrust faults. The main characteristics of the leveling and triangulation data are then fit by the optimal single fault model, that is, these results are consistent with a first-order rupture process characterized by a progressive rupture of a single fault system. A single uniform-slip fault model seems to not reproduce some minor complexities of the observations, and some residual signals that are not modelled by the optimal single-fault plane solution, were observed. In fact, the single fault plane model does not reproduce some minor features of the leveling deformation field along the route 36 south of the main uplift peak, that is, a second fault seems to be necessary to reproduce these residual signals. By assuming movements along some mapped thrust located southward of the inferred optimal single-plane solution, the residual signal has been successfully modelled. In summary, the inversion results presented in this Thesis, are consistent with the activation of some Periadriatic related thrust for the main events of the sequence, and with a minor importance of the southward thrust systems of the middle Tagliamento plain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iberia Africa plate boundary, cross, roughly W-E, connecting the eastern Atlantic Ocean from Azores triple junction to the Continental margin of Morocco. Relative movement between the two plate change along the boundary, from transtensive near the Azores archipelago, through trascurrent movement in the middle at the Gloria Fracture Zone, to transpressive in the Gulf of Cadiz area. This study presents the results of geophysical and geological analysis on the plate boundary area offshore Gibraltar. The main topic is to clarify the geodynamic evolution of this area from Oligocene to Quaternary. Recent studies have shown that the new plate boundary is represented by a 600 km long set of aligned, dextral trascurrent faults (the SWIM lineaments) connecting the Gloria fault to the Riff orogene. The western termination of these lineaments crosscuts the Gibraltar accretionary prism and seems to reach the Moroccan continental shelf. In the past two years newly acquired bathymetric data collected in the Moroccan offshore permit to enlighten the present position of the eastern portion of the plate boundary, previously thought to be a diffuse plate boundary. The plate boundary evolution, from the onset of compression in the Oligocene to the Late Pliocene activation of trascurrent structures, is not yet well constrained. The review of available seismics lines, gravity and bathymetric data, together with the analysis of new acquired bathymetric and high resolution seismic data offshore Morocco, allows to understand how the deformation acted at lithospheric scale under the compressive regime. Lithospheric folding in the area is suggested, and a new conceptual model is proposed for the propagation of the deformation acting in the brittle crust during this process. Our results show that lithospheric folding, both in oceanic and thinned continental crust, produced large wavelength synclines bounded by short wavelength, top thrust, anticlines. Two of these anticlines are located in the Gulf of Cadiz, and are represented by the Gorringe Ridge and Coral Patch seamounts. Lithospheric folding probably interacted with the Monchique – Madeira hotspot during the 72 Ma to Recent, NNE – SSW transit. Plume related volcanism is for the first time described on top of the Coral Patch seamount, where nine volcanoes are found by means of bathymetric data. 40Ar-39Ar age of 31.4±1.98 Ma are measured from one rock sample of one of these volcanoes. Analysis on biogenic samples show how the Coral Patch act as a starved offshore seamount since the Chattian. We proposed that compression stress formed lithospheric scale structures playing as a reserved lane for the upwelling of mantle material during the hotspot transit. The interaction between lithospheric folding and the hotspot emplacement can be also responsible for the irregularly spacing, and anomalous alignments, of individual islands and seamounts belonging to the Monchique - Madeira hotspot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use data from about 700 GPS stations in the EuroMediterranen region to investigate the present-day behavior of the the Calabrian subduction zone within the Mediterranean-scale plates kinematics and to perform local scale studies about the strain accumulation on active structures. We focus attenction on the Messina Straits and Crati Valley faults where GPS data show extentional velocity gradients of ∼3 mm/yr and ∼2 mm/yr, respectively. We use dislocation model and a non-linear constrained optimization algorithm to invert for fault geometric parameters and slip-rates and evaluate the associated uncertainties adopting a bootstrap approach. Our analysis suggest the presence of two partially locked normal faults. To investigate the impact of elastic strain contributes from other nearby active faults onto the observed velocity gradient we use a block modeling approach. Our models show that the inferred slip-rates on the two analyzed structures are strongly impacted by the assumed locking width of the Calabrian subduction thrust. In order to frame the observed local deformation features within the present- day central Mediterranean kinematics we realyze a statistical analysis testing the indipendent motion (w.r.t. the African and Eurasias plates) of the Adriatic, Cal- abrian and Sicilian blocks. Our preferred model confirms a microplate like behaviour for all the investigated blocks. Within these kinematic boundary conditions we fur- ther investigate the Calabrian Slab interface geometry using a combined approach of block modeling and χ2ν statistic. Almost no information is obtained using only the horizontal GPS velocities that prove to be a not sufficient dataset for a multi-parametric inversion approach. Trying to stronger constrain the slab geometry we estimate the predicted vertical velocities performing suites of forward models of elastic dislocations varying the fault locking depth. Comparison with the observed field suggest a maximum resolved locking depth of 25 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis tackles the problem of the automated detection of the atmospheric boundary layer (BL) height, h, from aerosol lidar/ceilometer observations. A new method, the Bayesian Selective Method (BSM), is presented. It implements a Bayesian statistical inference procedure which combines in an statistically optimal way different sources of information. Firstly atmospheric stratification boundaries are located from discontinuities in the ceilometer back-scattered signal. The BSM then identifies the discontinuity edge that has the highest probability to effectively mark the BL height. Information from the contemporaneus physical boundary layer model simulations and a climatological dataset of BL height evolution are combined in the assimilation framework to assist this choice. The BSM algorithm has been tested for four months of continuous ceilometer measurements collected during the BASE:ALFA project and is shown to realistically diagnose the BL depth evolution in many different weather conditions. Then the BASE:ALFA dataset is used to investigate the boundary layer structure in stable conditions. Functions from the Obukhov similarity theory are used as regression curves to fit observed velocity and temperature profiles in the lower half of the stable boundary layer. Surface fluxes of heat and momentum are best-fitting parameters in this exercise and are compared with what measured by a sonic anemometer. The comparison shows remarkable discrepancies, more evident in cases for which the bulk Richardson number turns out to be quite large. This analysis supports earlier results, that surface turbulent fluxes are not the appropriate scaling parameters for profiles of mean quantities in very stable conditions. One of the practical consequences is that boundary layer height diagnostic formulations which mainly rely on surface fluxes are in disagreement to what obtained by inspecting co-located radiosounding profiles.