18 resultados para biological potential
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Contaminants of emerging concern are increasingly detected in the water cycle, with endocrine-disrupting chemicals (EDCs) receiving attention due to their potential to cause adverse health effects even at low concentrations. Although the EU has recently introduced some EDCs into drinking water legislation, most drinking water treatment plants (DWTPs) are not designed to remove EDCs, making their detection and removal in DWTPs an important challenge. The aim of this doctoral project was to investigate hormones and phenolic compounds as suspected EDCs in drinking waters across the Romagna area (Italy). The main objectives were to assess the occurrence of considered contaminants in source and drinking water from three DWTPs, characterize the effectiveness of removal by different water treatment processes, and evaluate the potential biological impact on drinking water and human health. Specifically, a complementary approach of target chemical analysis and effect-based methods was adopted to explore drinking water quality, treatment efficacy, and biological potential. This study found that nonylphenol (NP) was prevalent in all samples, followed by BPA. Sporadic contamination of hormones was found only in source waters. Although the measured EDC concentrations in drinking water did not exceed threshold guideline values, the potential role of DWTPs as an additional source of EDC contamination should be considered. Significant increases in BPA and NP levels were observed during water treatment steps, which were also reflected in estrogenic and mutagenic responses in water samples after the ultrafiltration. This highlights the need to monitor water quality during various treatment processes to improve the efficiency of DWTPs. Biological assessments on finished water did not reveal any bioactivity, except for few treated water samples that exhibited estrogenic responses. Overall, the data emphasize the high quality of produced drinking water and the value of applying integrated chemical analysis and in vitro bioassays for water quality assessment.
Resumo:
Biological systems are complex and highly organized architectures governed by noncovalent interactions, which are responsible for molecular recognition, self-assembly, self-organization, adaptation and evolution processes. These systems provided the inspiration for the development of supramolecular chemistry, that aimed at the design of artificial multicomponent molecular assemblies, namely supramolecular systems, properly designed to perform different operations: each constituting unit performs a single act, whereas the entire supramolecular system is able to execute a more complex function, resulting from the cooperation of the constituting components. Supramolecular chemistry deals with the development of molecular systems able to mimic naturally occurring events, for example complexation and self-assembly through the establishment of noncovalent interactions. Moreover, the application of external stimuli, such as light, allows to perform these operations in a time- and space-controlled manner. These systems can interact with biological systems and, thus, can be applied for bioimaging, therapeutic and drug delivery purposes. In this work the study of biocompatible supramolecular species able to interact with light is presented. The first part deals with the photophysical, photochemical and electrochemical characterization of water-soluble blue emitting triazoloquinolinium and triazolopyridinium salts. Moreover, their interaction with DNA has been explored, in the perspective of developing water-soluble systems for bioimaging applications. In the second part, the effect exerted by the presence of azobenzene-bearing supramolecular species in liposomes, inserted both in the phospholipid bilayer and in the in the aqueous core of vesicles has been studied, in order to develop systems able to deliver small molecules and ions in a photocontrolled manner. Moreover, the versatility of azobenzene and its broad range of applications have been highlighted, since conjugated oligoazobenzene derivatives proved not to be adequate to be inserted in the phospholipid bilayer of liposomes, but their electrochemical properties made them interesting candidates as electron acceptor materials for photovoltaic applications.
Resumo:
The main aim of this PhD research project was the evaluation of the biological effects of bioactive compounds derived from edible plants, with particular attention on their possibility to counteract oxidative damage and inflammation. After a preliminary study of in vitro antioxidant activity, regarding the modification eventually occurring after home freezing and cooking of edible vegetables, cultured mammalian cells were used as experimental model systems. Soluble extract and essential oils derived from different cultivars of Brassicaceae and Lamiaceae were tested as possible tools for the counteraction of the oxidative damage due to reactive oxygen species (ROS), underlining differences related to cultivar and agronomic techniques. Since accumulating evidence indicates that phytochemicals exhibit several additional properties in complex biological systems, a nutrigenomic approach was used to further explain the biological activity of a green tea extract, and to evidence the anti-inflammatory role of bioactive compounds derived from different foods. Overall, results obtained could contribute to a better understanding of the potential health benefit of plant foods.
Resumo:
The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.
Design, synthesis and biological evaluation of substituted naphthalene diimides as anticancer agents
Resumo:
It has been proved that naphthalene diimide (NDI) derivatives display anticancer properties as intercalators and G-quadruplex-binding ligands, leading to DNA damage, senescence and down-regulation of oncogene expression. This thesis deals with the design and synthesis of disubstituted and tetrasubstituted NDI derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development. Disubstituted NDI compounds have been designed with the aim to provide potential multitarget directed ligands (MTDLs), in order to create molecules able to simultaneously interact with some of the different targets involved in this pathology. The most active compound, displayed antiproliferative activity in submicromolar range, especially against colon and prostate cancer cell lines, the ability to bind duplex and quadruplex DNA, to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Tetrasubstituted NDI compounds have been designed as G-quadruplex-binding ligands endowed with anticancer activity. In order to improve the cellular uptake of the lead compound, the N-methylpiperazine moiety have been replaced with different aromatic systems and methoxypropyl groups. The most interesting compound was 1d, which was able to interact with the G-quadruplexes both telomeric and in HSP90 promoter region, and it has been co-crystallized with the human telomeric G-quadruplex, to directly verify its ability to bind this kind of structure, and also to investigate its binding mode. All the morpholino substituted compounds show antiproliferative activity in submicromolar values mainly in pancreatic and lung cancer cell lines, and they show an improved biological profile in comparison with that of the lead compound. In conclusion, both these studies, may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.
Resumo:
Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.
Resumo:
Drug abuse is a major global problem which has a strong impact not only on the single individual but also on the entire society. Among the different strategies that can be used to address this issue an important role is played by identification of abusers and proper medical treatment. This kind of therapy should be carefully monitored in order to discourage improper use of the medication and to tailor the dose according to the specific needs of the patient. Hence, reliable analytical methods are needed to reveal drug intake and to support physicians in the pharmacological management of drug dependence. In the present Ph.D. thesis original analytical methods for the determination of drugs with a potential for abuse and of substances used in the pharmacological treatment of drug addiction are presented. In particular, the work has been focused on the analysis of ketamine, naloxone and long-acting opioids (buprenorphine and methadone), oxycodone, disulfiram and bupropion in human plasma and in dried blood spots. The developed methods are based on the use of high performance liquid chromatography (HPLC) coupled to various kinds of detectors (mass spectrometer, coulometric detector, diode array detector). For biological sample pre-treatment different techniques have been exploited, namely solid phase extraction and microextraction by packed sorbent. All the presented methods have been validated according to official guidelines with good results and some of these have been successfully applied to the therapeutic drug monitoring of patients under treatment for drug abuse.
Resumo:
I studied the effects exerted by the modifications on structures and biological activities of the compounds so obtained. I prepared peptide analogues containing unusual amino acids such as halogenated, alkylated (S)- or (R)-tryptophans, useful for the synthesis of mimetics of the endogenous opioid peptide endomorphin-1, or 2-oxo-1,3-oxazolidine-4-carboxylic acids, utilized as pseudo-prolines having a clear all-trans configuration of the preceding peptide bond. The latter gave access to a series of constrained peptidomimetics with potential interest in medicinal chemistry and in the field of the foldamers. In particular, I have dedicated much efforts to the preparation of cyclopentapeptides containing D-configured, alfa-, or beta-aminoacids, and also of cyclotetrapeptides including the retro-inverso modification. The conformational analyses confirmed that these cyclic compounds can be utilized as rigid scaffolds mimicking gamma- or beta-turns, allowing to generate new molecular and 3D diversity. Much work has been dedicated to the structural analysis in solution and in the receptor-bound state, fundamental for giving a rationale to the experimentally determined bioactivity, as well as for predicting the activity of virtual compounds (in silico pre-screen). The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, molecular dynamics, etc.). A special section is dedicated to the prediction of plausible poses of the ligands when bound to the receptors by Molecular Docking. This computational method proved to be a powerful tool for the investigation of ligand-receptor interactions, and for the design of selective agonists and antagonists. Another practical use of cyclic peptidomimetics was the synthesis and biological evaluation of cyclic analogues of endomorphin-1 lacking in a protonable amino group. The studies revealed that a inverse type II beta-turn on D-Trp-Phe constituted the bioactive conformation.
Resumo:
The aim of this work is to contribute to the development of new multifunctional nanocarriers for improved encapsulation and delivery of anticancer and antiviral drugs. The work focused on water soluble and biocompatible oligosaccharides, the cyclodextrins (CyDs), and a new family of nanostructured, biodegradable carrier materials made of porous metal-organic frameworks (nanoMOFs). The drugs of choice were the anticancer doxorubicin (DOX), azidothymidine (AZT) and its phosphate derivatives and artemisinin (ART). DOX possesses a pharmacological drawback due to its self-aggregation tendency in water. The non covalent binding of DOX to a series of CyD derivatives, such as g-CyD, an epichlorohydrin crosslinked b-CyD polymer (pb-CyD) and a citric acid crosslinked g-CyD polymer (pg-CyD) was studied by UV visible absorption, circular dichroism and fluorescence. Multivariate global analysis of multiwavelength data from spectroscopic titrations allowed identification and characterization of the stable complexes. pg-CyD proved to be the best carrier showing both high association constants and ability to monomerize DOX. AZT is an important antiretroviral drug. The active form is AZT-triphosphate (AZT-TP), formed in metabolic paths of low efficiency. Direct administration of AZT-TP is limited by its poor stability in biological media. So the development of suitable carriers is highly important. In this context we studied the binding of some phosphorilated derivatives to nanoMOFs by spectroscopic methods. The results obtained with iron(III)-trimesate nanoMOFs allowed to prove that the binding of these drugs mainly occurs by strong iono-covalent bonds to iron(III) centers. On the basis of these and other results obtained in partner laboratories, it was possible to propose this highly versatile and “green” carrier system for delivery of phosphorylated nucleoside analogues. The interaction of DOX with nanoMOFs was also studied. Finally the binding of the antimalarial drug, artemisinin (ART) with two cyclodextrin-based carriers,the pb-CyD and a light responsive bis(b-CyD) host, was also studied.
Resumo:
Microplastics (MP) are omnipresent contaminants in the marine environment. Ingestion of MP has been reported for a wide range of marine biota, but to what extent the uptake by organisms affects the dynamics and fate of MP in the marine system has received little attention. My thesis explored this topic by integrating laboratory tests and experiments, field quantitative surveys of MP distribution and dynamics, and the use of specialised analytical techniques such as Attenuated-Total-Reflectance- (ATR) and imaging- Fourier Transformed Infrared Spectroscopy (FTIR). I compared different methodologies to extract MP from wild invertebrate specimens, and selected the use of potassium hydroxide (KOH) as the most cost-effective approach. I used this approach to analyse the MP contamination in various invertebrate species with different ecological traits from European salt marshes. I found that 96% of the analysed specimens (330) did not contain any MP. As preliminary environmental analyses showed high levels of environmental MP contamination, I hypothesised that most MP do not accumulate into organisms but are rather fast egested. I subsequently used laboratory multi-trophic experiments and a long-term field experiment using the filter-feeding mussel Mytilus galloprovincialis and the detritus feeding polychaete Hediste diversicolor to test the aforementioned hypothesis. Overall, results showed that MP are ingested but rapidly egested by marine invertebrates, which may limit MP transfer via predator-prey interactions but at the same time enhance their transfer via detrital pathways in the sediments. These processes seem to be extremely variable over time, with potential unexplored environmental consequences. This rapid dynamics also limits the conclusions that can be derived from static observations of MP contents in marine organisms, not fully capturing the real levels of potential contaminations by marine species. This emphasises the need to consider such dynamics in future work to measure the uptake rates by organisms in natural systems.
Resumo:
Caves are dark and oligotrophic habitats where chemotrophic microbial communities interact with the inorganic mineral rocks and cooperate organizing themselves in complex biological formations, which are visible in caves as biofilms, biodeposits or biospeleothems. In these environments, microorganisms contribute to the turnover of the matter and activate peculiar enzymatic reactions leading to the modification of the mineral rocks and to the production of metabolites with possible industrial and pharmaceutical interest. In this PhD thesis, various molecular and geomicrobiological approaches were used to investigate the microbial diversity and potential activities in different cave systems, i.e. the orthoquartzite cave Imawarì Yeuta, the sufidic cave Fetida and the ice cave Cenote Abyss. This is aimed at gathering indications on the possible interactions that support microbial growth and its impact in cave environments. As a result, microbial taxa and functions associated to light-independent chemolithotroph and heterotrophic activities were identified in the three caves, indicating the involvement of microorganisms in i) silica mobilization and amorphization processes and the formation of a novel type of silica-based stromatolite in Imawarì Yeuta Cave, ii) the formation of three types of biofilm/biodeposit involved in sulphur cycle and in the speleogenesis of Fetida Cave, iii) the development of biofilms and their maintenance under psychrophilic conditions in samples collected from ice in Cenote Abyss. Additionally, the metabolic potentials of around one hundred isolates derived from these cave systems were evaluated in terms on anti-microbial activity. The results pointed out that unexplored and oligotrophic caves are promising environments for novel bioactive molecules discovery.
Resumo:
This PhD project has been mainly focused on the synthesis of novel organic compounds containing heterocyclic and/or carbocyclic scaffold and on the study of stearic acid derivatives and their applications in biological field. The synthesis of novel derivatives of 9-hydroxystearic acid (9-HSA) evidenced how the presence of substituents on C9, able to make hydrogen bonds is of crucial importance for the biological activity. Also the position of the hydroxy group along the chain of hydroxystearic acids was investigated: regioisomers with the hydroxy group bound to odd carbons resulted more active than those bearing the hydroxy group on even carbons. Further, the insertion of (R)-9-HSA in magnetic nanoparticles gave a novel material which characterization remarked its suitability for drug delivery. Structural hybrids between amino aza-heterocycles and azelaic acid have been synthesized and some of them showed a selective activity towards osteosarcoma cell line U2OS. Several Apcin analogues bearing indole, benzothiazole, benzofurazan moieties connected to tryptaminyl-, amino pyridinyl-, pyrimidinyl- and pyrazinyl ring through a 1,1,1-trichloroethyl group were synthesized. Biological tests showed the importance of both the tryptaminyl and the pyrimidinyl moieties, confirming the effectiveness against acute leukemia models. The SNAr between 2-aminothiazole derivatives and 7-chlorodinitrobenzofuroxan revealed different behaviour depending from amino substituent of the thiazole. The reaction with 2-N-piperidinyl-, 2-N-morpholinyl-, or 2-N-pyrrolidinyl thiazole gave two isomeric species derived from the attack on C-5 of thiazole ring. Thiazoles substituted with primary- or not-cyclic secondary amines reacted with the exocyclic amino nitrogen atom giving a series of compounds whose biological activity have highlighted as they might be promising candidates for further development of antitumor agents. A series of 9-fluorenylidene derivatives, of interest in medical and optoelectronic field as organic scintillators, was synthesized through Wittig or Suzuky reaction and will be analyzed to test their potential scintillatory properties.
Resumo:
BACKGROUND Neuroendocrine neoplasia (NEN) are divided in well differentiated G1,G2 and G3 neuroendocrine tumors (NETs) and G3 neuroendocrine carcinomas (NECs). For the latter no standard therapy in second-line is available and prognosis is poor. METHODS Primary aim was to evaluate new prognostic and predictive biomarkers (WP1-3). In WP4 we explored the activity of FOLFIRI and CAPTEM as second-line in NEC patients in a multicenter non-comparative phase II trial RESULTS In WP1-2 we found that 4 of 6 GEP-NEC patients with a negative 68Ga-PET/CT had a loss of expression of RB1. In WP3 on 47 GEP-NENs patients the presence of DLL3 in 76.9% of G3 NEC correlate with RB1-loss (p<0.001), negative 68Ga-PET/CT(p=0.001) and a poor prognosis. In the WP4 we conducted a multicenter non-comparative phase II trial to explore the activity of FOLFIRI or CAPTEM in terms of DCR, PFS and OS given as second-line in NEC patients. From 06/03/2017 to 18/01/2021 53 out of 112 patients were enrolled in 17 of 23 participating centers. Median follow-up was 10.8 (range 1.4 – 38.6) months. The 3-month DCR was 39.3% in the FOLFIRI and 32.0 % in the CAPTEM arm. The 6-months PFS rate was 34.6% ( 95%CI 17.5-52.5) in FOLFIRI and 9.6% (95%CI 1.8-25.7) in CAPTEM group. In the FOLFIRI subgroup the 6-months and 12-months OS rate were 55.4% (95%CI 32.6-73.3) and 30.3% (CI 11.1-52.2) respectively. In CAPTEM arm the 6-months and 12-months OS rate were 57.2% (95%34.9-74.3) and 29.0% (95%10.0-43.3). The miRNA analysis of 20 patients compared with 20 healthy subjects shows an overexpression of miRNAs involved in staminality , neo-angiogenesis and mitochontrial anaerobic glycolysis activation. CONCLUSION WP1-3 support the hypothesis that G3NECs carrying RB1 loss is associated with a DLL3 expression highlighting a potential therapeutic opportunity. Our study unfortunately didn’t met the primary end–point but the results are promising
Resumo:
This research aims to discover the virome diversity and composition in Fusarium poae and Fusarium proliferatum collections, characterize the mycovirus that may have an effect on host pathogenicity to provide potential materials for the biological control of Fusarium spp. pathogens. Next-Generation Sequencing (NGS) analysis of 30 F. poae isolates revealed an extreme diversity of mycoviruses. Bioinformatic analysis shows that contigs associated with viral genome belong to the families: Hypoviridae, Mitoviridae, Partitiviridae, Polymycoviridae, proposed Alternaviridae, proposed Fusagraviridae, proposed Fusariviridae, proposed Yadokariviridae, and Totiviridae. The complete genomes of 12 viruses were obtained by assembling contigs and overlapping cloning sequences. Moreover, all the F. poae isolates analyzed are multi-infected. Fusarium poae partitivirus 1 appears in all the 30 strains, followed by Fusarium poae fusagravirus 1 (22), Fusarium poae mitovirus 2 (18), Fusarium poae partitivirus 3 (16), and Fusarium poae mitovirus 2 and 3 (11). Using the same approach, the virome of F. proliferatum collections resulted in lower diversity and abundance. The identified mycoviruses belong to the family Mitoviridae and Mymonaviridae. Interestingly, most F. proliferatum isolates are not multi-infected. The complete genomes of four viruses were obtained by assembling contigs and overlapping cloning sequences. By multiple liner regression of the virome composition and growth rate of 30 F. poae, Fusarium poae mitovirus 3 is significantly correlated with the growth rate among F. poae collection. Furthermore, the principal component analysis of the virome composition from 30 F. poae showed that the presence of Fusarium poae mitovirus 3 and other two viruses could increase the F. poae growth rate. The curing experiment and pathogenicity test in Petri indicated that Fusarium poae hypovirus 1 might be associated with the host hypovirulence phenotype, while Fusarium poae fusagravirus 1 and Fusarium poae partitivirus 3 may have some beneficial effect on host pathogenicity.
Resumo:
Cancer research and development of targeting agents in this field is based on robust studies using preclinical models. The failure rate of standardized treatment approaches for several solid tumors has led to the urgent need to fine-tune more sophisticated and faithful preclinical models able to recapitulate the features of in vivo human tumors, with the final aim to shed light on new potential therapeutic targets. Epithelial Ovarian Cancer (EOC) serous histotype (HGSOC) is one of the most lethal diseases in women due to its high aggressiveness (75% of patients diagnosed at FIGO III-IV state) and poor prognosis (less of 50% in 5 years), whose therapy often fails as chemoresistance sets in. This thesis aimed at using the novel perfusion-based bioreactor U-CUP that provides direct perfusion throughout the tumor tissue seeking to obtain an EOC 3D ex vivo model able to recapitulate the features of the original tumor including the tumor microenvironment and maintaining its cellular heterogeneity. Moreover, we optimized this approach so that it can be successfully applied to slow-frozen tumoral tissues, further extending the usefulness of this tool. We also investigated the effectiveness of Plasma Activated Ringer’s Lactate solution (PA-RL) against Epithelial Ovarian Cancer (EOC) serous histotype in both 2D and 3D cultures using ex-vivo specimens from HGSOC patients. We propose PA-RL as a novel therapy with local intraperitoneal administration, which could act on primary or metastatic ovarian tumors inducing a specific cancer cell death with reduced damage on the surrounding healthy tissues.