17 resultados para binary to multi-class classifiers
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis deals with robust adaptive control and its applications, and it is divided into three main parts. The first part is about the design of robust estimation algorithms based on recursive least squares. First, we present an estimator for the frequencies of biased multi-harmonic signals, and then an algorithm for distributed estimation of an unknown parameter over a network of adaptive agents. In the second part of this thesis, we consider a cooperative control problem over uncertain networks of linear systems and Kuramoto systems, in which the agents have to track the reference generated by a leader exosystem. Since the reference signal is not available to each network node, novel distributed observers are designed so as to reconstruct the reference signal locally for each agent, and therefore decentralizing the problem. In the third and final part of this thesis, we consider robust estimation tasks for mobile robotics applications. In particular, we first consider the problem of slip estimation for agricultural tracked vehicles. Then, we consider a search and rescue application in which we need to drive an unmanned aerial vehicle as close as possible to the unknown (and to be estimated) position of a victim, who is buried under the snow after an avalanche event. In this thesis, robustness is intended as an input-to-state stability property of the proposed identifiers (sometimes referred to as adaptive laws), with respect to additive disturbances, and relative to a steady-state trajectory that is associated with a correct estimation of the unknown parameter to be found.
Resumo:
In this Thesis a series of numerical models for the evaluation of the seasonal performance of reversible air-to-water heat pump systems coupled to residential and non-residential buildings are presented. The exploitation of the energy saving potential linked to the adoption of heat pumps is a hard task for designers due to the influence on their energy performance of several factors, like the external climate variability, the heat pump modulation capacity, the system control strategy and the hydronic loop configuration. The aim of this work is to study in detail all these aspects. In the first part of this Thesis a series of models which use a temperature class approach for the prediction of the seasonal performance of reversible air source heat pumps are shown. An innovative methodology for the calculation of the seasonal performance of an air-to-water heat pump has been proposed as an extension of the procedure reported by the European standard EN 14825. This methodology can be applied not only to air-to-water single-stage heat pumps (On-off HPs) but also to multi-stage (MSHPs) and inverter-driven units (IDHPs). In the second part, dynamic simulation has been used with the aim to optimize the control systems of the heat pump and of the HVAC plant. A series of dynamic models, developed by means of TRNSYS, are presented to study the behavior of On-off HPs, MSHPs and IDHPs. The main goal of these dynamic simulations is to show the influence of the heat pump control strategies and of the lay-out of the hydronic loop used to couple the heat pump to the emitters on the seasonal performance of the system. A particular focus is given to the modeling of the energy losses linked to on-off cycling.
Resumo:
Traditional software engineering approaches and metaphors fall short when applied to areas of growing relevance such as electronic commerce, enterprise resource planning, and mobile computing: such areas, in fact, generally call for open architectures that may evolve dynamically over time so as to accommodate new components and meet new requirements. This is probably one of the main reasons that the agent metaphor and the agent-oriented paradigm are gaining momentum in these areas. This thesis deals with the engineering of complex software systems in terms of the agent paradigm. This paradigm is based on the notions of agent and systems of interacting agents as fundamental abstractions for designing, developing and managing at runtime typically distributed software systems. However, today the engineer often works with technologies that do not support the abstractions used in the design of the systems. For this reason the research on methodologies becomes the basic point in the scientific activity. Currently most agent-oriented methodologies are supported by small teams of academic researchers, and as a result, most of them are in an early stage and still in the first context of mostly \academic" approaches for agent-oriented systems development. Moreover, such methodologies are not well documented and very often defined and presented only by focusing on specific aspects of the methodology. The role played by meta- models becomes fundamental for comparing and evaluating the methodologies. In fact a meta-model specifies the concepts, rules and relationships used to define methodologies. Although it is possible to describe a methodology without an explicit meta-model, formalising the underpinning ideas of the methodology in question is valuable when checking its consistency or planning extensions or modifications. A good meta-model must address all the different aspects of a methodology, i.e. the process to be followed, the work products to be generated and those responsible for making all this happen. In turn, specifying the work products that must be developed implies dening the basic modelling building blocks from which they are built. As a building block, the agent abstraction alone is not enough to fully model all the aspects related to multi-agent systems in a natural way. In particular, different perspectives exist on the role that environment plays within agent systems: however, it is clear at least that all non-agent elements of a multi-agent system are typically considered to be part of the multi-agent system environment. The key role of environment as a first-class abstraction in the engineering of multi-agent system is today generally acknowledged in the multi-agent system community, so environment should be explicitly accounted for in the engineering of multi-agent system, working as a new design dimension for agent-oriented methodologies. At least two main ingredients shape the environment: environment abstractions - entities of the environment encapsulating some functions -, and topology abstractions - entities of environment that represent the (either logical or physical) spatial structure. In addition, the engineering of non-trivial multi-agent systems requires principles and mechanisms for supporting the management of the system representation complexity. These principles lead to the adoption of a multi-layered description, which could be used by designers to provide different levels of abstraction over multi-agent systems. The research in these fields has lead to the formulation of a new version of the SODA methodology where environment abstractions and layering principles are exploited for en- gineering multi-agent systems.
Resumo:
Mycotoxins are contaminants of agricultural products both in the field and during storage and can enter the food chain through contaminated cereals and foods (milk, meat, and eggs) obtained from animals fed mycotoxin contaminated feeds. Mycotoxins are genotoxic carcinogens that cause health and economic problems. Ochratoxin A and fumonisin B1 have been classified by the International Agency for Research on Cancer in 1993, as “possibly carcinogenic to humans” (class 2B). To control mycotoxins induced damages, different strategies have been developed to reduce the growth of mycotoxigenic fungi as well as to decontaminate and/or detoxify mycotoxin contaminated foods and animal feeds. Critical points, target for these strategies, are: prevention of mycotoxin contamination, detoxification of mycotoxins already present in food and feed, inhibition of mycotoxin absorption in the gastrointestinal tract, reduce mycotoxin induced damages when absorption occurs. Decontamination processes, as indicate by FAO, needs the following requisites to reduce toxic and economic impact of mycotoxins: it must destroy, inactivate, or remove mycotoxins; it must not produce or leave toxic and/or carcinogenic/mutagenic residues in the final products or in food products obtained from animals fed decontaminated feed; it must be capable of destroying fungal spores and mycelium in order to avoiding mycotoxin formation under favorable conditions; it should not adversely affect desirable physical and sensory properties of the feedstuff; it has to be technically and economically feasible. One important approach to the prevention of mycotoxicosis in livestock is the addition in the diets of the non-nutritionally adsorbents that bind mycotoxins preventing the absorption in the gastrointestinal tract. Activated carbons, hydrated sodium calcium aluminosilicate (HSCAS), zeolites, bentonites, and certain clays, are the most studied adsorbent and they possess a high affinity for mycotoxins. In recent years, there has been increasing interest on the hypothesis that the absorption in consumed food can be inhibited by microorganisms in the gastrointestinal tract. Numerous investigators showed that some dairy strains of LAB and bifidobacteria were able to bind aflatoxins effectively. There is a strong need for prevention of the mycotoxin-induced damages once the toxin is ingested. Nutritional approaches, such as supplementation of nutrients, food components, or additives with protective effects against mycotoxin toxicity are assuming increasing interest. Since mycotoxins have been known to produce damages by increasing oxidative stress, the protective properties of antioxidant substances have been extensively investigated. Purpose of the present study was to investigate in vitro and in vivo, strategies to counteract mycotoxin threat particularly in swine husbandry. The Ussing chambers technique was applied in the present study that for the first time to investigate in vitro the permeability of OTA and FB1 through rat intestinal mucosa. Results showed that OTA and FB1 were not absorbed from rat small intestine mucosa. Since in vivo absorption of both mycotoxins normally occurs, it is evident that in these experimental conditions Ussing diffusion chambers were not able to assess the intestinal permeability of OTA and FB1. A large number of LAB strains isolated from feces and different gastrointestinal tract regions of pigs and poultry were screened for their ability to remove OTA, FB1, and DON from bacterial medium. Results of this in vitro study showed low efficacy of isolated LAB strains to reduce OTA, FB1, and DON from bacterial medium. An in vivo trial in rats was performed to evaluate the effects of in-feed supplementation of a LAB strain, Pediococcus pentosaceus FBB61, to counteract the toxic effects induced by exposure to OTA contaminated diets. The study allows to conclude that feed supplementation with P. pentosaceus FBB61 ameliorates the oxidative status in liver, and lowers OTA induced oxidative damage in liver and kidney if diet was contaminated by OTA. This P. pentosaceus FBB61 feature joined to its bactericidal activity against Gram positive bacteria and its ability to modulate gut microflora balance in pigs, encourage additional in vivo experiments in order to better understand the potential role of P. pentosaceus FBB61 as probiotic for farm animals and humans. In the present study, in vivo trial on weaned piglets fed FB1 allow to conclude that feeding of 7.32 ppm of FB1 for 6 weeks did not impair growth performance. Deoxynivalenol contamination of feeds was evaluated in an in vivo trial on weaned piglets. The comparison between growth parameters of piglets fed DON contaminated diet and contaminated diet supplemented with the commercial product did not reach the significance level but piglet growth performances were numerically improved when the commercial product was added to DON contaminated diet. Further studies are needed to improve knowledge on mycotoxins intestinal absorption, mechanism for their detoxification in feeds and foods, and nutritional strategies to reduce mycotoxins induced damages in animals and humans. The multifactorial approach acting on each of the various steps could be a promising strategy to counteract mycotoxins damages.
Resumo:
Neuroinflammatory pathways are main culprits of neurodegenerative diseases' onset and progression, including Alzheimer’s disease (AD). On this basis, several anti-inflammatory drugs were repurposed in clinical trials. However, they have failed, probably because neuroinflammation is a complex network, still not fully understood. From these evidences, this thesis focused on the design and synthesis of new chemical entities as potential neuroinflammatory drugs or chemical probes. Projects 1 and 2 aimed to multi-target-directed ligand (MTDL) development to target neuroinflammation in AD. Polypharmacology by MTDLs is considered one of the most promising strategies to face the multifactorial nature of neurodegenerative diseases. Particularly, Project 1 took inspiration from a cromolyn-ibuprofen drug combination polypharmacological approach, which was recently investigated in AD clinical trials. Based on that, two cromolyn-(S)-ibuprofen codrug series were designed and synthesized. Parent drugs were combined via linking or fusing strategies in 1:2 or 1:1 ratio, by means of hydrolyzable bonds. Project 2 started from a still ongoing AD clinical trial on investigational drug neflamapimod. It is a selective inhibitor of p38α-MAPK, a kinase strictly involved in neuroinflammatory pathways. On the other side, rasagiline, an anti-Parkinson drug, was also repurposed as AD treatment. Indeed, rasagiline’s propargylamine fragment demonstrated to be responsible not only for the MAO-B selective inhibition, but also for the neuroprotective activity. Thus, to synergistically combine these two effects into single-molecules, a small set of neflamapimod-rasagiline hybrids was developed. In the end BMX, a poorly investigated kinase, which seems to be involved in pro-inflammatory mediator production, was explored for the development of new chemical probes. High-quality chemical probes are a powerful tool in target validation and starting points for the development of new drug candidates. Thus, Project 3 focused on the design and synthesis of two series of optimized BMX covalent inhibitors as selective chemical probes.
Resumo:
Classical myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that manifest with inflammation, promotion of atherosclerosis, hypercoagulability, fibrosis, and clonal evolution. The complex biological background lends itself to multi-omics studies. We have previously shown that reduced platelet fibrinogen receptor (PFR) expression may follow hyperactivation of plasma-dependent mechanisms, such as tissue factor (TF) release, unbalanced thrombin generation, involvement of protease-activated receptors (PARs). Acetylsalicylic acid (ASA) helped to restore the expression of PFRs. In this study, we enrolled 53 MPN patients, subjecting them to advanced genetic testing (panel of 30 genes in NGS), global coagulation testing (Rotational Thromboelastometry - ROTEM) and cytofluorometric determination of PFRs. ROTEM parameters appear to differ considerably depending on the type of pathology under investigation, cell count, and selected mutations. Essential thrombocythemia (ET) and CALR mutation appear to correlate with increased efficiency of both classical coagulation pathways, with significantly more contracted clot formation times (CFTs). In contrast, primary myelofibrosis (PMF) and polycythemia vera (PV) show greater imbalances in the hemostatic system. PV, probably due to its peculiar hematological features, shows a lengthening of the CFT and, at the same time, a selective contraction of parameters in INTEM with the increase of platelets and white blood cells. PMF - in contrast - seems to exploit the extrinsic pathway more to increase cell numbers. The presence of DNMT3A mutations is associated with reduced clotting time (CT) in EXTEM, while ASXL1 causes reduced maximal lysis (ML). EZH2 could be responsible for the elongation of CFT in INTEM assay. In addition, increased PFR expression is associated with history of hemorrhage and sustained CT time in FIBTEM under ASA prophylaxis. Our findings corroborate the existing models on the connection between fibrosis, genetic complexity, clonal progression, and hypercoagulability. Global coagulation assays and PFR expression are potentially useful tools for dynamic evaluation of treatments’ outcomes.
Resumo:
The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.
Resumo:
Water is a safe, harmless, and environmentally benign solvent. From an eco-sustainable chemistry perspective, the use of water instead of organic solvent is preferred to decrease environmental contamination. Moreover, water has unique physical and chemical properties, such as high dielectric constant and high cohesive energy density compared to most organic solvents. The different interactions between water and substrates, make water an interesting candidate as a solvent or co-solvent from an industrial and laboratory perspective. In this regard, organic reactions in aqueous media are of current interest. In addition, from practical and synthetic standpoints, a great advantage of using water is immediately evident, since it does not require any preliminary drying process. This thesis was found on this aspect of chemical research, with particular attention to the mechanisms which control organo and bio-catalysis outcome. The first part of the study was focused on the aldol reaction. In particular, for the first time it has been analyzed for the first time the stereoselectivity of the condensation reaction between 3-pyridincarbaldehyde and the cyclohexanone, catalyzed by morpholine and 4-tertbutyldimethylsiloxyproline, using water as sole solvent. This interest has resulted in countless works appeared in the literature concerning the use of proline derivatives as effective catalysts in organic aqueous environment. These studies showed good enantio and diastereoselectivities but they did not present an in depth study of the reaction mechanism. The analysis of the products diastereomeric ratios through the Eyring equation allowed to compare the activation parameters (ΔΔH≠ and ΔΔS≠) of the diastereomeric reaction paths, and to compare the different type of catalysis. While morpholine showed constant diasteromeric ratio at all temperatures, the O(TBS)-L-proline, showed a non-linear Eyring diagram, with two linear trends and the presence of an inversion temperature (Tinv) at 53 ° C, which denotes the presence of solvation effects by water. A pH-dependent study allowed to identify two different reaction mechanisms, and in the case of O(TBS)-L-proline, to ensure the formation of an enaminic species, as a keyelement in the stereoselective process. Moreover, it has been studied the possibility of using the 6- aminopenicillanic acid (6-APA) as amino acid-type catalyst for aldol condensation between cyclohexanone and aromatic aldehydes. A detailed analysis of the catalyst regarding its behavior in different organic solvents and pH, allowed to prove its potential as a candidate for green catalysis. Best results were obtained in neat conditions, where 6-APA proved to be an effective catalyst in terms of yields. The catalyst performance in terms of enantio- and diastereo-selectivity, was impaired by the competition between two different catalytic mechanisms: one via imine-enamine mechanism and one via a Bronsted-acid catalysis. The last part of the thesis was dedicated to the enzymatic catalysis, with particular attention to the use of an enzyme belonging to the class of alcohol dehydrogenase, the Horse Liver Alcohol Dehydrogenase (HLADH) which was selected and used in the enantioselective reduction of aldehydes to enantiopure arylpropylic alcohols. This enzyme has showed an excellent responsiveness to this type of aldehydes and a good tolerance toward organic solvents. Moreover, the fast keto-enolic equilibrium of this class of aldehydes that induce the stereocentre racemization, allows the dynamic-kinetic resolution (DKR) to give the enantiopure alcohol. By analyzing the different reaction parameters, especially the pH and the amount of enzyme, and adding a small percentage of organic solvent, it was possible to control all the parameters involved in the reaction. The excellent enatioselectivity of HLADH along with the DKR of arylpropionic aldehydes, allowed to obtain the corresponding alcohols in quantitative yields and with an optical purity ranging from 64% to >99%.
Resumo:
Kidney transplantation is the best treatment option for the restoration of excretory and endocrine kidney function in patients with end-stage renal disease. The success of the transplant is linked to the genetic compatibility between donor and recipient, and upon progress in surgery and immunosuppressive therapy. Numerous studies have established the importance of innate immunity in transplantation tolerance, in particular natural killer (NK) cells represent a population of cells involved in defense against infectious agents and tumor cells. NK cells express on their surface the Killer-cell Immunoglobulin-like Receptors (KIR) which, by recognizing and binding to MHC class I antigens, prevent the killing of autologous cells. In solid organ transplantation context, and in particular the kidney, recent studies show some correlation between the incompatibility KIR / HLA and outcome of transplantation so as to represent an interesting perspective, especially as regards setting of immunosuppressive therapy. The purpose of this study was therefore to assess whether the incompatibility between recipient KIR receptors and HLA class I ligands of the donor could be a useful predictor in order to improve the survival of the transplanted kidney and also to select patients who might benefit of a reduced regimen. One hundred and thirteen renal transplant patients from 1999 to 2005 were enrolled. Genomic DNA was extracted for each of them and their donors and genotyping of HLA A, B, C and 14 KIR genes was carried out. Data analysis was conducted on two case-control studies: one aimed at assessing the outcome of acute rejection and the other to assess the long term transplant outcome. The results showed that two genes, KIR2DS1 and KIR3DS1, are associated with the development of acute rejection (p = 0.02 and p = 0.05, respectively). The presence of the KIR2DS3 gene is associated with a better performance of serum creatinine and glomerular filtration rate (MDRD) over time (4 and 5 years after transplantation, p <0.05), while in the presence of ligand, the serum creatinine and MDRD trend seems to get worse in the long term. The analysis performed on the population, according to whether there was deterioration of renal function or not in the long term, showed that the absence of the KIR2DL1 gene is strongly associated with an increase of 20% of the creatinine value at 5 years, with a relative risk to having a greater creatinine level than the median 5-year equal to 2.7 95% (95% CI: 1.7788 - 2.6631). Finally, the presence of a kidney resulting negative for HLA-A3 / A11, compared to a positive result, in patients with KIR3DL2, showed a relative risk of having a serum creatinine above the median at 5 years after transplantation of 0.6609 (95% CI: 0.4529 -0.9643), suggesting a protective effect given to the absence of this ligand.
Resumo:
Progress in miniaturization of electronic components and design of wireless systems paved the way towards ubiquitous and pervasive communications, enabling anywhere and anytime connectivity. Wireless devices present on, inside, around the human body are becoming commonly used, leading to the class of body-centric communications. The presence of the body with all its peculiar characteristics has to be properly taken into account in the development and design of wireless networks in this context. This thesis addresses various aspects of body-centric communications, with the aim of investigating network performance achievable in different scenarios. The main original contributions pertain to the performance evaluation for Wireless Body Area Networks (WBANs) at the Medium Access Control layer: the application of Link Adaptation to these networks is proposed, Carrier Sense Multiple Access with Collision Avoidance algorithms used for WBAN are extensively investigated, coexistence with other wireless systems is examined. Then, an analytical model for interference in wireless access network is developed, which can be applied to the study of communication between devices located on humans and fixed nodes of an external infrastructure. Finally, results on experimental activities regarding the investigation of human mobility and sociality are presented.
Resumo:
Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems.
Resumo:
La ricerca riguarda lo studio del cantiere edilizio protobizantino, con particolare riferimento al ciclo della lavorazione del marmo. Quest’ultimo viene analizzato sotto il profilo amministrativo, tecnico, sociale ed artigianale. L’elemento guida della ricerca sono i marchi dei marmorari, sigle apposte da funzionari e maestranze durante il processo produttivo. Dapprima, fonti letterarie ed epigrafiche, tra cui le sigle di cava e officina su marmo, vengono esaminate per ricostruire il sistema alto-imperiale di amministrazione delle cave e di gestione dei flussi marmorei, nonché l’iter tecnico-artigianale adottato per la produzione dei manufatti. Il confronto con i dati disponibili per la tarda antichità, con particolare riferimento alle cave di Proconneso, evidenzia una sostanziale continuità della prassi burocratico-amministrativa, mentre alcuni cambiamenti si riscontrano nell’ambito produttivo-artigianale. Il funzionamento degli atelier marmorari viene approfondito attraverso lo studio dei marchi dei marmorari. Si tratta di caratteri greci singoli, multipli o monogrammi. Una ricognizione sistematica delle sigle dalla pars Orientalis dell’impero, reperite in bibliografia o da ricognizioni autoptiche, ha portato alla raccolta di circa 2360 attestazioni. Per esse si propone una classificazione tipologica tra sigle di cava, stoccaggio, officina. Tra le sigle di cava si annoverano sigle di controllo, destinazione/committenza, assemblaggio/posizionamento. Una particolare attenzione è riservata alle sigle di officina, riferibili ad un nome proprio di persona, ovvero al πρωτομαΐστωρ, il capo-bottega che supervisionava il lavoro dei propri artigiani e fungeva da garante del prodotto consegnato alla committenza. Attraverso lo studio comparato delle sigle reperite a Costantinopoli e in altri contesti si mette in luce la prassi operativa adottata dagli atelier nei processi di manifattura, affrontando anche il problema delle maestranze itineranti. Infine, sono analizzate fonti scritte di varia natura per poter collocare il fenomeno del marmo in un contesto socio-economico più ampio, con particolare riferimento alle figure professionali ed artigianali coinvolte nei cantieri e al problema della committenza.
Resumo:
9-hydroxystearic acid (9-HSA) belongs to a class of lipid peroxidation products identified in several human and murine cell lines. These products are greatly diminished in tumors compared to normal tissues and their amount is inversely correlated with the malignancy of the tumor. 9-HSA activity has been tested in cancer cell lines, where it showed to act as a histone deacetylase 1 (HDAC1) inhibitor. In particular, in a colon cancer cell line (HT29), its administration resulted in an inhibition of proliferation together with an induction of differentiation. In this thesis the effect of (R)-9-hydroxystearic acid has been tested in vivo on cell proliferation and differentiation processes, in the early stages of zebrafish development. The final aim of this work was to elucidate the role of (R)-9-HSA in the control of cell differentiation and proliferation during normal development, in order to better understand its molecular control of cancerogenesis. The molecule has been administered via injection in the yolk of zebrafish embryos. The analysis of the histone acetylation pattern showed a hyperacetilation of histone H4 after treatment with the molecule, as detectable in HDAC1 mutants. (R)-9-HSA was also demonstrated to interfere with the signaling pathways that regulate proliferation and differentiation in zebrafish retina and hindbrain. This resulted in a reduction of proliferation in the hindbrain at 24 hours post injection (hpi), and in a hyperproliferation at 48 and 72 hpi in the retina, with a concomitant inhibition of differentiation. Finally, (R)-9-HSA effects were evident on proliferation of stem cell located in the ciliary marginal zone (CMZ) of the retina. The presence of ROS and 4-hydroxynoneal in the CMZ of wild-type embryos supports the hypothesis that oxidative stress could regulate stem cells fate in zebrafish retina.
Resumo:
The research work has dealt with the study of new catalytic processes for the synthesis of fine chemicals belonging to the class of phenolics, namely 2-phenoxyethanol and hydroxytyrosol. The two synthetic procedures investigated have the advantages of being much closer to the Green Chemistry principles than those currently used industrially. In both cases, the challenge was that of finding catalysts and methods which led to the production of less waste, and used less hazardous chemicals, safer solvents, and reusable heterogeneous catalysts. In the case of 2-phenoxyethanol, the process investigated involves the use of ethylene carbonate (EC) as the reactant for phenol O-hydroxyethylation, in place of ethylene oxide. Besides being a safer reactant, the major advantage of using EC in the new synthesis is the better selectivity to the desired product achieved. Moreover, the solid catalyst based on Na-mordenite was fully recyclable. The reaction mechanism and the effect of the Si/Al ratio in the mordenite were investigated. In the case of hydroxytyrosol, which is one of the most powerful natural antioxidants, a new synthetic procedure was investigated; in fact, the method currently employed, the hydrolysis of oleuropein, an ester extracted from the waste water processing of the olive, makes use of large amounts of organic solvents (hexane, ethyl acetate), and involves several expensive steps of purification. The synthesis procedure set up involves first the reaction between catechol and 2,2-dimethoxyacetaldehyde, followed by the one-pot reduction of the intermediate to give the desired product. Both steps were optimized, in terms of catalyst used, and of reaction conditions, that allowed to reach ca 70% yield in each step. The reaction mechanism was investigated and elucidated. During a 3-month period spent at the University of Valencia (with Prof. A. Corma’s group), a process for the production of diesel additives (2,5-bis(propoxymethyl)furan) from fructose has been investigated.
Resumo:
This thesis provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a Gaussian stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density, and encompasses the traditional and inverse autocovariance functions. Its nonparametric estimator is based on the inverse discrete Fourier transform of the same power transformation of the pooled periodogram. The general result is then applied to the class of Gaussian stationary ARMA processes and its implications are discussed. We illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator. Selection of the pooling parameter, which characterizes the nonparametric estimator of the generalised autocovariance, controlling its resolution, is addressed by using a multiplicative periodogram bootstrap to estimate the finite-sample distribution of the estimator. A multivariate extension of recently introduced spectral models for univariate time series is considered, and an algorithm for the coefficients of a power transformation of matrix polynomials is derived, which allows to obtain the Wold coefficients from the matrix coefficients characterizing the generalised matrix cepstral models. This algorithm also allows the definition of the matrix variance profile, providing important quantities for vector time series analysis. A nonparametric estimator based on a transformation of the smoothed periodogram is proposed for estimation of the matrix variance profile.