5 resultados para bimetallic
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work deals with the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using metal supported catalysts. Catalysts were prepared from the immobilisation of preformed monometallic (Au, Pd) and bimetallic (AuCu, AuPd) nanoparticles on commercial oxides (TiO2, CeO2). Au-TiO2 catalyst was found to be very active for HMF oxidation; however, this system deactivated very fast. For this reason, we prepared bimetallic gold-copper nanoparticles and an increase in the catalytic activity was observed together with an increase in catalyst stability. In order to optimise the interaction of the metal active phase with the support, Au and AuCu nanoparticles were supported onto CeO2. Au-CeO2 catalyst was found to be more active than the bimetallic one, leading to the conclusion that in this case the most important feature is the interaction between gold and the support. Catalyst pre-treatments (calcination and washing) were carried out to maximise the contact between the metal and the oxide and an increase in the FDCA production could be observed. The presence of ceria defective sites was crucial for FDCA formation. Mesoporous cerium oxide was synthesised with the hard template method and was used as support for Au nanoparticles to promote the catalytic activity. In order to study the role of active phase in HMF oxidation, PdAu nanoparticles were supported onto TiO2. Au and Pd monometallic catalysts were very active in the formation of HMFCA (5-hydroxymethyl-2-furan carboxylic acid), but Pd was not able to convert it, leading to a low FDCA yield. The calcination of PdAu catalysts led to Pd segregation on the particles surface, which changed the reaction pathway and included an important contribution of the Cannizzaro reaction. PVP protected PdAu nanoparticles, synthesised with different morphologies (core-shell and alloyed structure), confirmed the presence of a different reaction mechanism when the metal surface composition changes.
Resumo:
The demand of energy, fuels and chemicals is increasing due to the strong growth of some countries in the developing world and the development of the world economy. Unfortunately, the general picture derived sparked an exponential increase in crude oil prices with a consequent increase of the chemical, by-products and energy, depleting the global market. Nowadays biomass are the most promising alternative to fossil fuels for the production of chemicals and fuels. In this work, the development of three different catalytic processes for the valorization of biomass-derived has been investigated. 5-hydroxymethylfurfural oxidation was studied under mild reaction condition using gold and gold/copper based catalysts synthetized from pre-formed nanoparticles and supported onto TiO2 and CeO2. The analysis conducted on catalysts showed the formation of alloys gold/copper and a strong synergistic effect between the two metals. For this reason the bimetallic catalysts supported on titania showed a higher catalytic activity respect to the monometallic catalysts. The process for the production of 2,5-bishydroxymethyl furan (BHMF) was also optimized by means the 5-hydroxymethylfurfural hydrogenation using the Shvo complex. Complete conversion of HMF was achieved working at 90 °C and 10 bar of hydrogen. The complex was found to be re-usable for at least three catalytic cycles without suffering any type of deactivation. Finally, the hydrogenation of furfural and HMF was carried out, developing the process of hydrogen transfer by using MgO as a catalyst and methanol as a hydrogen donor. Quantitative yields to alcohols have been achieved in a few hours working in mild condition: 160 °C and at autogenous pressure. The only by-products formed were light products such as CO, CO2 and CH4 (products derived from methanol transformation), easily separable from the reaction solution depressurizing the reactor.
Resumo:
The research of new advanced processes for syngas production is a part of a European project for the production of a new Gas to Liquid Process (NextGTL). The crucial points in the production of GTL process are the energy required for the air separation used in autothermal reforming or the heat required for steam reforming and the efficiency in carbon utilization. Therefore a new multistep oxy-reforming process scheme was developed at lower temperature with intermediate H2 membrane separation to improve the crucial parameter. The process is characterized by a S/C of 0.7 and O2/C of 0.21 having a smoothed temperature profile in which kinetic regime is easily obtained. Active catalysts for low temperature oxy-reforming process have been studied working at low pressure to discriminate among the catalyst and at high pressure to prove it on industrial condition. It allows the selection of the Rh as active phase among single and bimetallic VIII group metal. The study of the matrix composition and thermal treatment has been carried out on Rh-Mg/Al hydrotalcite selected as reference catalyst. The research to optimize the catalyst lead to enhanced performances through the identification of a limitation of the Rh reduction from the oxides matrix as key point to increase the Rh performances. The Rh loading have been studied to allow the catalyst scale up for pilot process in Chieti in a shape of Rh-HT on honeycomb ceramic material. The developed catalyst has enhanced methane conversion in a inch diameter monolith reactor if compared with the semi-industrial catalyst chosen in the project as the best reference.
Resumo:
In this work the hydrodechlorination of CF3OCFClCF2Cl to produce unsaturated CF3OCF=CF2 was studied over a series of supported metal catalysts. Currently this molecule is produced from the precursor CF3OCFClCF2Cl by dechlorination with zinc powder. An important cost on the economic and environmental balance is represents by the large amount of ZnCl2 produced and to be disposed of. A new approach, based on gas-phase hydrodechlorination over supported catalysts can lead to a new sustainable process. During the feasibility step of this project, substantially two kind of materials were studied: metals supported over activated carbon and Pd/Cu species supported over MCM-41 mesoporous silica. Observed catalytic performances were strongly dependent on the metal and support used. All carbon-supported Ru, Pd, and bimetallic catalysts are fairly active and yielded the target product CF3OCF=CF2, the higher selectivity being obtained with ruthenium- and palladium-based materials. Nevertheless, Ru-based catalysts showed poor stability and this deactivation may be attributed to the deposition of chlorinated organic species blocking the active sites. On the other hand, palladium-containing catalysts showed high stability. Ru/Pd and Pd/Cu bimetallic catalysts exhibited long-term selectivity and stability, highlighting the possibility for these materials to be employed in the CF3OCF=CF2 production process. During the second part of this thesis, a series of bimetallic meso-structured Pd/Cu MCM-41 catalysts were studies to overcome possible mass transfer limitations. The materials were obtained by different synthesis methods. The incorporation of Pd and Cu during MCM-41 synthesis, did not destroy the typical hexagonal array and ordered pore system of MCM-41. However, the calcination for the removal of the template provoked significant segregation of oxides. The impregnation leads to pore-occlusion and formation of Cu particles and large bimetallic PdCu species. Larger metal particles leads to lower CF3OCFClCF2Cl conversion, while the monometallic particles can decrease the selectivity to CF3OCF=CF2, fostering the dehalogenation to CF3OCH=CF2.
Resumo:
In this thesis, the syntheses and the characterizations of several new bimetallic carbonyl clusters have been outlined. X-ray crystallography is a key technique in order to elucidate their structures which can be related to their chemical and physical properties. In particular, electrochemical studies are very useful in order to understand how the physical properties of metal aggregates change with increasing size and when the molecular behavior fades into bulk behavior. Moreover, the incipient metallization of the cluster has be assessed (not measured) via UV-vis analyses even if this technique revealed to be not very useful in order to distinguish the different species present in solution. Overall, this work demonstrates that molecular nanoclusters are ideal models in order to better understand the structures and properties of ultrasmall metal nanoparticles.