8 resultados para basolateral amygdala

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was performed to validate a spatial working memory task using pharmacological manipulations. The water escape T-maze, which combines the advantages of the Morris water maze and the T-maze while minimizes the disadvantages, was used. Scopolamine, a drug that affects cognitive function in spatial working memory tasks, significantly decreased the rat performance in the present delayed alternation task. Since glutamate neurotransmission plays an important role in the maintaining of working memory, we evaluated the effect of ionotropic and metabotropic glutamatergic receptors antagonists, administered alone or in combination, on rat behaviour. As the acquisition and performance of memory tasks has been linked to the expression of the immediately early gene cFos, a marker of neuronal activation, we also investigated the neurochemical correlates of the water escape T-maze after pharmacological treatment with glutamatergic antagonists, in various brain areas. Moreover, we focused our attention on the involvement of perirhinal cortex glutamatergic neurotransmission in the acquisition and/or consolidation of this particular task. The perirhinal cortex has strong and reciprocal connections with both specific cortical sensory areas and some memory-related structures, including the hippocampal formation and amygdala. For its peculiar position, perirhinal cortex has been recently regarded as a key region in working memory processes, in particular in providing temporary maintenance of information. The effect of perirhinal cortex lesions with ibotenic acid on the acquisition and consolidation of the water escape T-maze task was evaluated. In conclusion, our data suggest that the water escape T-maze could be considered a valid, simple and quite fast method to assess spatial working memory, sensible to pharmacological manipulations. Following execution of the task, we observed cFos expression in several brain regions. Furthermore, in accordance to literature, our results suggest that glutamatergic neurotransmission plays an important role in the acquisition and consolidation of working memory processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and aim Ulcerative Colitis (UC) and Crohn’s Disease (CD), collectively labelled as inflammatory bowel disease (IBD), are idiopathic, chronic inflammatory disorder of the bowel with a remitting and relapsing course. IBD are associated to poor emotional functioning and psychological distress. We have investigated the brain involvement in patients with IBD using functional magnetic resonance imaging (fMRI). Materials and methods We developed an emotional visual task to investigate the emotional functioning in 10 UC patients and 10 healthy controls (HC). Furthermore, we have compared the brain stress response between a group of 20 CD patients and a group of 18 HC. Finally, we evaluated potential morphological differences between 18 CD patients and 18 HC in a voxel based morphometry (VBM) study. Results We found brain functional changes in UC patients characterized by decreased activity in the amygdala in response to positive emotional stimuli. Moreover, in CD patients, the brain stress response and habituation to stressful stimuli were significantly different in the medial temporal lobe (including the amygdala and hippocampus), the insula and cerebellum. Finally, in CD patients there were morphological abnormalities in the anterior mid cingulated cortex (aMCC). Conclusion IBD are associated to functional and morphological brain abnormalities. The previous intestinal inflammatory activity in IBD patients might have contributed to determine the functional and morphological changes we found. On the other hand, the dysfunctions of the brain structures we found may influence the course of the disease. Our findings might have clinical implications. The differences in the emotional processing may play a role in the development of psychological disorders in UC patients. Furthermore, in CD patients, the different habituation to stress might contribute to stress related inflammatory exacerbations. Finally, the structural changes in the aMCC might be involved in the pain symptoms associated to the bowel disorder.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is probably caused by both genetic and environmental risk factors. The major genetic risk factor is the E4 variant of apolipoprotein E gene called apoE4. Several risk factors for developing AD have been identified including lifestyle, such as dietary habits. The mechanisms behind the AD pathogenesis and the onset of cognitive decline in the AD brain are presently unknown. In this study we wanted to characterize the effects of the interaction between environmental risk factors and apoE genotype on neurodegeneration processes, with particular focus on behavioural studies and neurodegenerative processes at molecular level. Towards this aim, we used 6 months-old apoE4 and apoE3 Target Replacement (TR) mice fed on different diets (high intake of cholesterol and high intake of carbohydrates). These mice were evaluated for learning and memory deficits in spatial reference (Morris Water Maze (MWM)) and contextual learning (Passive Avoidance) tasks, which involve the hippocampus and the amygdala, respectively. From these behavioural studies we found that the initial cognitive impairments manifested as a retention deficit in apoE4 mice fed on high carbohydrate diet. Thus, the genetic risk factor apoE4 genotype associated with a high carbohydrate diet seems to affect cognitive functions in young mice, corroborating the theory that the combination of genetic and environmental risk factors greatly increases the risk of developing AD and leads to an earlier onset of cognitive deficits. The cellular and molecular bases of the cognitive decline in AD are largely unknown. In order to determine the molecular changes for the onset of the early cognitive impairment observed in the behavioural studies, we performed molecular studies, with particular focus on synaptic integrity and Tau phosphorylation. The most relevant finding of our molecular studies showed a significant decrease of Brain-derived Neurotrophic Factor (BDNF) in apoE4 mice fed on high carbohydrate diet. Our results may suggest that BDNF decrease found in apoE4 HS mice could be involved in the earliest impairment in long-term reference memory observed in behavioural studies. The second aim of this thesis was to study possible involvement of leptin in AD. There is growing evidence that leptin has neuroprotective properties in the Central Nervous System (CNS). Recent evidence has shown that leptin and its receptors are widespread in the CNS and may provide neuronal survival signals. However, there are still numerous questions, regarding the molecular mechanism by which leptin acts, that remain unanswered. Thus, given to the importance of the involvement of leptin in AD, we wanted to clarify the function of leptin in the pathogenesis of AD and to investigate if apoE genotype affect leptin levels through studies in vitro, in mice and in human. Our findings suggest that apoE4 TR mice showed an increase of leptin in the brain. Leptin levels are also increased in the cerebral spinal fluid of AD patients and apoE4 carriers with AD have higher levels of leptin than apoE3 carriers. Moreover, leptin seems to be expressed by reactive glial cells in AD brains. In vitro, ApoE4 together with Amyloid beta increases leptin production by microglia and astrocytes. Taken together, all these findings suggest that leptin replacement might not be a good strategy for AD therapy. Our results show that high leptin levels were found in AD brains. These findings suggest that, as high leptin levels do not promote satiety in obese individuals, it might be possible that they do not promote neuroprotection in AD patients. Therefore, we hypothesized that AD brain could suffer from leptin resistance. Further studies will be critical to determine whether or not the central leptin resistance in SNC could affect its potential neuroprotective effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

People are daily faced with intertemporal choice, i.e., choices differing in the timing of their consequences, frequently preferring smaller-sooner rewards over larger-delayed ones, reflecting temporal discounting of the value of future outcomes. This dissertation addresses two main goals. New evidence about the neural bases of intertemporal choice is provided. Following the disruption of either the medial orbitofrontal cortex or the insula, the willingness to wait for larger-delayed outcomes is affected in odd directions, suggesting the causal involvement of these areas in regulating the value computation of rewards available with different timings. These findings were also supported by a reported imaging study. Moreover, this dissertation provides new evidence about how temporal discounting can be modulated at a behavioral level through different manipulations, e.g., allowing individuals to think about the distant time, pairing rewards with aversive events, or changing their perceived spatial position. A relationship between intertemporal choice, moral judgements and aging is also discussed. All these findings link together to support a unitary neural model of temporal discounting according to which signals coming from several cortical (i.e., medial orbitofrontal cortex, insula) and subcortical regions (i.e., amygdala, ventral striatum) are integrated to represent the subjective value of both earlier and later rewards, under the top-down regulation of dorsolateral prefrontal cortex. The present findings also support the idea that the process of outcome evaluation is strictly related to the ability to pre-experience and envision future events through self-projection, the anticipation of visceral feelings associated with receiving rewards, and the psychological distance from rewards. Furthermore, taking into account the emotions and the state of arousal at the time of decision seems necessary to understand impulsivity associated with preferring smaller-sooner goods in place of larger-later goods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of Clostridium difficile toxin A and B (TcdA and TcdB) to cellular intoxication has been extensively studied, but their impact on bacterial colonization remains unclear. By setting-up two- and three-dimensional in vitro models of polarized gut epithelium, we investigated how C. difficile infection is affected by host cell polarity and whether TcdA and TcdB contribute to such events. Indeed, we observed that C. difficile adhesion and penetration of the epithelial barrier is substantially enhanced in poorly polarized or EGTA-treated cells, indicating that bacteria bind preferentially to the basolateral cell surface. In this context, we demonstrated that sub-lethal concentrations of C. difficile TcdA are able to alter cell polarity by causing redistribution of plasma membrane components between distinct surface domains. Taken together, the data suggest that toxin-mediated modulation of host cell organization may account for the capacity of this opportunistic pathogen to gain access to basolateral receptors leading to a successful colonization of the colonic mucosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic pain affects one in five adults, reducing quality of life and increasing risk of developing co-morbidities such as depression. Neuropathic pain results by lesions to the nervous system that alter its structure and function leading to spontaneous pain and amplified responses to noxious and innocuous stimuli. The Opioid System is probably the most important system involved in control of nociceptive transmission. Dynorphin and nociceptin systems have been suggested key mediators of some neuropathic pain aspects. An important role also for BDNF has been recently suggested since its involvement in the peripheral and central sensitization phenomena is known. We studied neuroplastic alterations occurring in chronic pain in mice subjected to the chronic constriction injury (CCI). We investigated gene expression alterations of both BDNF and Opioid System at spinal level at different intervals of time. A transient upregulation of pBDNF and pDYN was observed in spinal cord, while increasing upregulation of ppN/OFQ was found in the DRGs of injured mice. Development of neuropathic behavioral signs has been observed in ICR/CD-1 and BDNF+/+ mice, subjected to CCI. A different development of these signs was observed in BDNF+/-. We also studied gene expression changes of investigated systems in different brain areas fourteen days after surgery. We found pBDNF, pDYN, pKOP, ppN/OFQ and pNOP gene expression alterations in several areas of CCI mice. In the same brain regions we also determined bioactive nociceptin peptide levels, and elevated N/OFQ levels were observed in the amygdala area. Histone modifications studies have been performed in BDNF and DYN gene promoters of CCI animal spinal cord showing selected alterations in pDYN gene promoter. In addition, a preliminary characterization of the innovative NOP-EGFP mice was performed. Overall, our results could be useful to understand which and how neuropeptidergic systems are involved in neuroplastic mechanism occurring in neuropathic pain.