25 resultados para autonomic ganglia

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiovascular regulation undergoes wide changes in the different states of sleepwake cycle. In particular, the relationship between spontaneous fluctuations in heart period and arterial pressure clearly shows differences between the two sleep states. In non rapid-eye-movement sleep, heart rhythm is under prevalent baroreflex control, whereas in rapid-eye-movement sleep central autonomic commands prevail (Zoccoli et al., 2001). Moreover, during rapid-eye-movement sleep the cardiovascular variables show wide fluctuations around their mean value. In particular, during rapid-eyemovement sleep, the arterial pressure shows phasic hypertensive events which are superimposed upon the tonic level of arterial pressure. These phasic increases in arterial pressure are accompanied by an increase in heart rate (Sei & Morita, 1996; Silvani et al., 2005). Thus, rapid-eye-movement sleep may represent an “autonomic stress test” for the cardiovascular system, able to unmask pathological patterns of cardiovascular regulation (Verrier et al. 2005), but this hypothesis has never been tested experimentally. The aim of this study was to investigate whether rapid-eye-movement sleep may reveal derangements in central autonomic cardiovascular control in an experimental model of essential hypertension. The study was performed in Spontaneously Hypertensive Rats, which represent the most widely used model of essential hypertension, and allow full control of genetic and environmental confounding factors. In particular, we analyzed the cardiovascular, electroencephalogram, and electromyogram changes associated with phasic hypertensive events during rapid-eyemovement sleep in Spontaneously Hypertensive Rats and in their genetic Wistar Kyoto control strain. Moreover, we studied also a group of Spontaneously Hypertensive Rats made phenotypically normotensive by means of a chronic treatment with an angiotensin converting enzyme inhibitor, the Enalapril maleate, from the age of four weeks to the end of the experiment. All rats were implanted with electrodes for electroencephalographic and electromyographic recordings and with an arterial catheter for arterial pressure measurement. After six days for postoperative recovery, the rats were studied for five days, at an age of ten weeks.The study indicated that the peak of mean arterial pressure increase during the phasic hypertensive events in rapid-eye-movement sleep did not differ significantly between Spontaneously Hypertensive Rats and Wistar Kyoto rats, while on the other hand Spontaneously Hypertensive Rats showed a reduced increase in the frequency of theta rhythm and a reduced tachicardia with respect to Wistar Kyoto rats. The same pattern of changes in mean arterial pressure, heart period, and theta frequency was observed between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate. Spontaneously Hypertensive Rats do not differ from Wistar Kyoto rats only in terms of arterial hypertension, but also due to multiple unknown genetic differences. Spontaneously Hypertensive Rats were developed by selective breeding of Wistar Kyoto rats based only on the level of arterial pressure. However, in this process, multiple genes possibly unrelated to hypertension may have been selected together with the genetic determinants of hypertension (Carley et al., 2000). This study indicated that Spontaneously Hypertensive Rats differ from Wistar Kyoto rats, but not from Spontaneously Hypertensive Rats treated with Enalapril maleate, in terms of arterial pH and theta frequency. This feature may be due to genetic determinants unrelated to hypertension. In sharp contrast, the persistence of differences in the peak of heart period decrease and the peak of theta frequency increase during phasic hypertensive events between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate demonstrates that the observed reduction in central autonomic control of the cardiovascular system in Spontaneously Hypertensive Rats is not an irreversible consequence of inherited genetic determinants. Rather, the comparison between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate indicates that the observed differences in central autonomic control are the result of the hypertension per se. This work supports the view that the study of cardiovascular regulation in sleep provides fundamental insight on the pathophysiology of hypertension, and may thus contribute to the understanding of this disease, which is a major health problem in European countries (Wolf-Maier et al., 2003) with its burden of cardiac, vascular, and renal complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal cord injury (SCI) results not only in paralysis; but it is also associated with a range of autonomic dysregulation that can interfere with cardiovascular, bladder, bowel, temperature, and sexual function. The entity of the autonomic dysfunction is related to the level and severity of injury to descending autonomic (sympathetic) pathways. For many years there was limited awareness of these issues and the attention given to them by the scientific and medical community was scarce. Yet, even if a new system to document the impact of SCI on autonomic function has recently been proposed, the current standard of assessment of SCI (American Spinal Injury Association (ASIA) examination) evaluates motor and sensory pathways, but not severity of injury to autonomic pathways. Beside the severe impact on quality of life, autonomic dysfunction in persons with SCI is associated with increased risk of cardiovascular disease and mortality. Therefore, obtaining information regarding autonomic function in persons with SCI is pivotal and clinical examinations and laboratory evaluations to detect the presence of autonomic dysfunction and quantitate its severity are mandatory. Furthermore, previous studies demonstrated that there is an intimate relationship between the autonomic nervous system and sleep from anatomical, physiological, and neurochemical points of view. Although, even if previous epidemiological studies demonstrated that sleep problems are common in spinal cord injury (SCI), so far only limited polysomnographic (PSG) data are available. Finally, until now, circadian and state dependent autonomic regulation of blood pressure (BP), heart rate (HR) and body core temperature (BcT) were never assessed in SCI patients. Aim of the current study was to establish the association between the autonomic control of the cardiovascular function and thermoregulation, sleep parameters and increased cardiovascular risk in SCI patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il trigono della vescica urinaria (UBT) è un'area limitata attraverso la quale penetrano nella vescica la maggior parte dei vasi e fibre e in cui le fibre nervose e neuroni intramurali sono più concentrati. Mediante l’utilizzo combinato di un tracciante retrogrado(FB) e dell’immunoistochimica sono stati valutati il fenotipo e l’area del soma dei neuroni dei gangli spinali (DRG), dei neuroni post-gangliari, il fenotipo dei gangli della catena simpatica (STG) e i gangli mesenterici caudali (CMG) innervanti l’UBT. - Caratterizzazione dei neuroni dei DRG con: peptide correlato al gene della calcitonina (CGRP)(30±3%, 29±3%, rispettivamente), sostanza P(SP)(26±8%, 27±12%), ossido nitrico sintasi neuronale (nNOS)(21±4%; 26±7%), neurofilamento 200kDa (NF200)(75±14%, 81±7% ) , transient receptor potential vanilloid1 (TRPV1)(48±13%, 43±6%) e isolectina-B4-positivi (IB4) (56±6%;43±10%). I neuroni sensoriali, distribuiti da L2 a Ca1 (DRG), hanno presentato una localizzazione segmentale, mostrando maggior densità nei DRG L4-L5 e S2-S4. I neuroni sensoriali lombari sono risultati significativamente più grandi di quelle sacrali (1.112±624μm2 vs716±421μm2). Complessivamente, questi dati indicano che le vie lombari e sacrali probabilmente svolgono ruoli diversi nella trasmissione sensitiva del trigono della vescica urinaria. -I neuroni FB+ della STG e dei CMG sono risultati immunoreattivi per la tirosina idrossilasi (TH)(66±10,1%, 53±8,2%, rispettivamente), la dopamina beta-idrossilasi (DβH)(62±6,2%, 52±6,2%), neuropeptideY (NPY)(59±8%; 66±7%), CGRP(24±3%, 22±3%), SP(22±2%; 38±8%), polipeptide intestinale vasoattivo (VIP)(19±2%; 35±4%), nNOS(15±2%; 33±8%), trasportatore vescicolare dell'acetilcolina (VAChT)(15±2%; 35±5%), leu-encefalina (LENK)(14±7%; 26±9%), e somatostatina (SOM)(12±3%;32±7%).Il numero medio di neuroni FB+ (1845,1±259,3) era nella STG in L1-S3, con i pirenofori più piccoli (465,6±82.7μm2). Un gran numero (4287,5±1450,6) di neuroni FB+ di piccole dimensioni (476,1±103,9μm2) sono stati localizzati lungo il margine dei CMG. Il maggior numero (4793,3±1990,8) di neuroni FB + è stato osservato nel plesso pelvico, dove i neuroni marcati erano raggruppati in micro-gangli e con pirenoforo ancora più piccolo (374,9±85,4 μm2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The arousal scoring in Obstructive Sleep Apnea Syndrome (OSAS) is important to clarify the impact of the disease on sleep but the currently applied American Academy of Sleep Medicine (AASM) definition may underestimate the subtle alterations of sleep. The aims of the present study were to evaluate the impact of respiratory events on cortical and autonomic arousal response and to quantify the additional value of cyclic alternating pattern (CAP) and pulse wave amplitude (PWA) for a more accurate detection of respiratory events and sleep alterations in OSAS patients. A retrospective revision of 19 polysomnographic recordings of OSAS patients was carried out. Analysis was focused on quantification of apneas (AP), hypopneas (H) and flow limitation (FL) events, and on investigation of cerebral and autonomic activity. Only 41.1% of FL events analyzed in non rapid eye movement met the AASM rules for the definition of respiratory event-related arousal (RERA), while 75.5% of FL events ended with a CAP A phase. The dual response (EEG-PWA) was the most frequent response for all subtypes of respiratory event with a progressive reduction from AP to H and FL. 87.7% of respiratory events with EEG activation showed also a PWA drop and 53,4% of the respiratory events without EEG activation presented a PWA drop. The relationship between the respiratory events and the arousal response is more complex than that suggested by the international classification. In the estimation of the response to respiratory events, the CAP scoring and PWA analysis can offer more extensive information compared to the AASM rules. Our data confirm also that the application of PWA scoring improves the detection of respiratory events and could reduce the underestimation of OSAS severity compared to AASM arousal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The habenular nuclei are diencephalic structures present in Vertebrates and they form, with the associated fiber systems, a part of the system that connects the telencephalon to the ventral mesencephalon (Concha M. L. and Wilson S. W., 2001). In representative species of almost all classes of Vertebrates the habenular nuclei are asymmetric, both in terms of size and of neuronal and neurochemical organization, although different types of asymmetry follow different evolutionary courses. Previous studies have analyzed the spread and diversity of the asymmetry in species for which data are not clear (Kemali M. et al., 1980). Notwithstanding that, it’s still not totally understood the evolution of the phenomenon, and the ontogenetic mechanisms that have led to the habenular asymmetry development are not clear (Smeets W.J. et al., 1983). For the present study 14 species of Elasmobranchs and 15 species of Teleostean have been used. Brains removed from the animals have been fixed using 4% paraformaldehyde in phosphate buffer; brains have been analyzed with different tecniques, and I used histological, immunohistochemical and ultrastructural analysis to describe this asymmetry. My results confirm data previously obtained studying other Elasmobranchs species, in which the left habenula is larger than the right one; the Teleostean show some slightly differences regarding the size of the habenular ganglia, in some species, in which the left habenular nucleus is larger than the right. In the course of studies, a correlation between the habits of life and the diencephalic asymmetry seems to emerge: among the Teleostean analyzed, the species with benthic life (like Lepidorhombus boscii, Platichthys flesus, Solea vulgaris) seem to possess a slight asymmetry, analogous to the one of the Elasmobranchs, while in the other species (like Liza aurata, Anguilla anguilla, Trisopterus minutus) the habenulae are symmetrical. However, various aspects of the neuroanatomical asymmetries of the epithalamus have not been deepened in order to obtain a complete picture of the evolution of this phenomenon, and new searches are needed to examine the species without clear asymmetry, in order to understand the spread and the diversity of the asymmetry among the habenulae between the Vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The full exploitation of multi-hop multi-path connectivity opportunities offered by heterogeneous wireless interfaces could enable innovative Always Best Served (ABS) deployment scenarios where mobile clients dynamically self-organize to offer/exploit Internet connectivity at best. Only novel middleware solutions based on heterogeneous context information can seamlessly enable this scenario: middleware solutions should i) provide a translucent access to low-level components, to achieve both fully aware and simplified pre-configured interactions, ii) permit to fully exploit communication interface capabilities, i.e., not only getting but also providing connectivity in a peer-to-peer fashion, thus relieving final users and application developers from the burden of directly managing wireless interface heterogeneity, and iii) consider user mobility as crucial context information evaluating at provision time the suitability of available Internet points of access differently when the mobile client is still or in motion. The novelty of this research work resides in three primary points. First of all, it proposes a novel model and taxonomy providing a common vocabulary to easily describe and position solutions in the area of context-aware autonomic management of preferred network opportunities. Secondly, it presents PoSIM, a context-aware middleware for the synergic exploitation and control of heterogeneous positioning systems that facilitates the development and portability of location-based services. PoSIM is translucent, i.e., it can provide application developers with differentiated visibility of data characteristics and control possibilities of available positioning solutions, thus dynamically adapting to application-specific deployment requirements and enabling cross-layer management decisions. Finally, it provides the MMHC solution for the self-organization of multi-hop multi-path heterogeneous connectivity. MMHC considers a limited set of practical indicators on node mobility and wireless network characteristics for a coarsegrained estimation of expected reliability/quality of multi-hop paths available at runtime. In particular, MMHC manages the durability/throughput-aware formation and selection of different multi-hop paths simultaneously. Furthermore, MMHC provides a novel solution based on adaptive buffers, proactively managed based on handover prediction, to support continuous services, especially by pre-fetching multimedia contents to avoid streaming interruptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction The “eversion” technique for carotid endarterectomy (e-CEA), that involves the transection of the internal carotid artery at the carotid bulb and its eversion over the atherosclerotic plaque, has been associated with an increased risk of postoperative hypertension possibly due to a direct iatrogenic damage to the carotid sinus fibers. The aim of this study is to assess the long-term effect of the e-CEA on arterial baroreflex and peripheral chemoreflex function in humans. Methods A retrospective review was conducted on a prospectively compiled computerized database of 3128 CEAs performed on 2617 patients at our Center between January 2001 and March 2006. During this period, a total of 292 patients who had bilateral carotid stenosis ≥70% at the time of the first admission underwent staged bilateral CEAs. Of these, 93 patients had staged bilateral e-CEAs, 126 staged bilateral s- CEAs and 73 had different procedures on each carotid. CEAs were performed with either the eversion or the standard technique with routine Dacron patching in all cases. The study inclusion criteria were bilateral CEA with the same technique on both sides and an uneventful postoperative course after both procedures. We decided to enroll patients submitted to bilateral e-CEA to eliminate the background noise from contralateral carotid sinus fibers. Exclusion criteria were: age >70 years, diabetes mellitus, chronic pulmonary disease, symptomatic ischemic cardiac disease or medical therapy with b-blockers, cardiac arrhythmia, permanent neurologic deficits or an abnormal preoperative cerebral CT scan, carotid restenosis and previous neck or chest surgery or irradiation. Young and aged-matched healthy subjects were also recruited as controls. Patients were assessed by the 4 standard cardiovascular reflex tests, including Lying-to-standing, Orthostatic hypotension, Deep breathing, and Valsalva Maneuver. Indirect autonomic parameters were assessed with a non-invasive approach based on spectral analysis of EKG RR interval, systolic arterial pressure, and respiration variability, performed with an ad hoc software. From the analysis of these parameters the software provides the estimates of spontaneous baroreflex sensitivity (BRS). The ventilatory response to hypoxia was assessed in patients and controls by means of classic rebreathing tests. Results A total of 29 patients (16 males, age 62.4±8.0 years) were enrolled. Overall, 13 patients had undergone bilateral e-CEA (44.8%) and 16 bilateral s-CEA (55.2%) with a mean interval between the procedures of 62±56 days. No patient showed signs or symptoms of autonomic dysfunction, including labile hypertension, tachycardia, palpitations, headache, inappropriate diaphoresis, pallor or flushing. The results of standard cardiovascular autonomic tests showed no evidence of autonomic dysfunction in any of the enrolled patients. At spectral analysis, a residual baroreflex performance was shown in both patient groups, though reduced, as expected, compared to young controls. Notably, baroreflex function was better maintained in e-CEA, compared to standard CEA. (BRS at rest: young controls 19.93 ± 2.45 msec/mmHg; age-matched controls 7.75 ± 1.24; e-CEA 13.85 ± 5.14; s-CEA 4.93 ± 1.15; ANOVA P=0.001; BRS at stand: young controls 7.83 ± 0.66; age-matched controls 3.71 ± 0.35; e-CEA 7.04 ± 1.99; s-CEA 3.57 ± 1.20; ANOVA P=0.001). In all subjects ventilation (VÝ E) and oximetry data fitted a linear regression model with r values > 0.8. Oneway analysis of variance showed a significantly higher slope both for ΔVE/ΔSaO2 in controls compared with both patient groups which were not different from each other (-1.37 ± 0.33 compared with -0.33±0.08 and -0.29 ±0.13 l/min/%SaO2, p<0.05, Fig.). Similar results were observed for and ΔVE/ΔPetO2 (-0.20 ± 0.1 versus -0.01 ± 0.0 and -0.07 ± 0.02 l/min/mmHg, p<0.05). A regression model using treatment, age, baseline FiCO2 and minimum SaO2 achieved showed only treatment as a significant factor in explaining the variance in minute ventilation (R2= 25%). Conclusions Overall, we demonstrated that bilateral e-CEA does not imply a carotid sinus denervation. As a result of some expected degree of iatrogenic damage, such performance was lower than that of controls. Interestingly though, baroreflex performance appeared better maintained in e-CEA than in s-CEA. This may be related to the changes in the elastic properties of the carotid sinus vascular wall, as the patch is more rigid than the endarterectomized carotid wall that remains in the e-CEA. These data confirmed the safety of CEA irrespective of the surgical technique and have relevant clinical implication in the assessment of the frequent hemodynamic disturbances associated with carotid angioplasty stenting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the wake sleep (W-S) cycle in mammals, the alternation of the different states, wake, NREM sleep (NREMS) and REM sleep (REMS), is associated not only with electroencephalographic or behavioural changes, but also with modifications in the physiological regulations of the organism. The most evident change is the existence of a suspension of the somatic and autonomic thermoregulatory responses during REMS. Since thermoregulation is prevalently controlled by the Preoptic Area-Anterior Hypothalamus (PO-AH), its suspension during REM sleep has been taken as a sign of an impairment of the hypothalamic integrative activity that could explain the modifications in physiological regulation observed in this sleep stage. The recent finding from our laboratory that the secretion of the antidiuretic hormone arginine-vasopressin (AVP) in response to a central osmotic stimulation is quantitatively the same throughout the different stages of the W-S cycle, has shown that hypothalamic osmoregulation is not suspended during REMS. In order to clarify the extent of the hypothalamic involvement in the regulation of the W-S cycle, we have studied the effects of three days of water deprivation and of two days of recovery during which animals were allowed a free access to water, on the architecture of the W-S cycle. The condition of water deprivation represents a severe challenge involving neuroendocrine and autonomic hypothalamic regulations. In contradiction with thermoregulatory studies, in which it has been clearly demonstrated that a thermal challenge selectively reduces REMS occurrence, the results of this study show that REMS occurrence is mildly reduced only in the third day of water deprivation. The most striking effects produced by water deprivation appear to concern NREMS, which shows a selective and significant reduction in its slow EEG activity (delta-power) but not in its duration. The recovery period is mainly characterized by a disruption of the normal circadian rhythm of REMS occurrence and by a rebound of the delta power in NREMS. Thus, an autonomic challenge different from those related to thermoregulation and an endocrine challenge as the continuous secretion of AVP show to exert different effects on the stages of the wake-sleep cycle. Also, this study demonstrates that the impairment of the hypothalamic integrative activity thought to characterize the occurrence of REMS only involves thermoregulatory structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enteric nervous system regulates autonomously from the central nervous system all the reflex pathways that control blood flow, motility, water and electrolyte transport and acid secretion. The ability of the gut to function in isolation is one of the most intriguing phenomenons in neurogastroenterology. This requires coding of sensory stimuli by cells in the gut wall. Enteric neurons are prominent candidates to relay mechanosensitivity. Surprisingly, the identity of mechanosensitive neurons in the enteric nervous system as well as the appropriate stimulus modality is unknown despite the evidence that enteric neurons respond to sustained distension. Objectives: The aim of our study was to record from mechanosensitive neurons using physiological stimulus modalities. Identification of sensory neurons is of central importance to understand sensory transmission under normal conditions and in gut diseases associated with sensorimotor dysfunctions, such as Irritable Bowel Syndrome. Only then it will be possible to identify novel targets that help to normalise sensory functions. Methods: We used guinea-pig ileum myenteric plexus preparations and recorded responses of all neurons in a given ganglion with a fast neuroimaging technique based on voltage sensitive dyes. To evoke a mechanical response we used two different kinds of stimuli: firstly we applied a local mechanical distortion of the ganglion surface with von Frey hair. Secondarily we mimic the ganglia deformation during physiological movements of myenteric ganglia in a freely contracting ileal preparation. We were able to reliably and reproducibly mimic this distortion by intraganglionic injections of small volumes of oxygenated and buffered Krebs solution using stimulus parameters that correspond to single contractions. We also performed in every ganglion tested, electrical stimulations to evoke fast excitatory postsynaptic potentials. Immunohistochemistry reactions were done with antibodies against Calbindin and NeuN, considered markers for sensory neurons. Results: Recordings were performed in 46 ganglia from 31 guinea pigs. In every ganglion tested we found from 1 to 21 (from 3% to 62%) responding cells with a median value of 7 (24% of the total number of neurons). The response consisted of an almost instantaneous spike discharge that showed adaptation. The median value of the action potential frequency in the responding neurons was 2.0 Hz, with a recording time of 1255 ms. The spike discharge lasted for 302 ± 231 ms and occurred only during the initial deformation phase. During sustained deformation no spike discharge was observed. The response was reproducible and was a direct activation of the enteric neurons since it remained after synaptic blockade with hexamethonium or ω-conotoxin and after long time perfusion with capsaicin. Muscle tone appears not to be required for activation of mechanosensory neurons. Mechanosensory neurons showed a response to mechanical stimulation related to the stimulus strength. All mechanosensory neurons received fast synaptic inputs. There was no correlation between mechanosensitivity and Calbindin-IR and NeuN-IR (44% of mechanosensitive neurones Calb-IR-/NeuN-IR-). Conclusions: We identified mechanosensitive neurons in the myenteric plexus of the guinea pig ileum which responded to brief deformation. These cells appear to be rapidly accommodating neurons which respond to dynamic change. All mechanosensitive neurons received fast synaptic input suggesting that their activity can be highly modulated by other neurons and hence there is a low stimulus fidelity which allows adjusting the gain in a sensory network. Mechanosensitivity appears to be a common feature of many enteric neurons belonging to different functional classes. This supports the existence of multifunctional enteric neurons which may fulfil sensory, integrative and motor functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring foetal health is a very important task in clinical practice to appropriately plan pregnancy management and delivery. In the third trimester of pregnancy, ultrasound cardiotocography is the most employed diagnostic technique: foetal heart rate and uterine contractions signals are simultaneously recorded and analysed in order to ascertain foetal health. Because ultrasound cardiotocography interpretation still lacks of complete reliability, new parameters and methods of interpretation, or alternative methodologies, are necessary to further support physicians’ decisions. To this aim, in this thesis, foetal phonocardiography and electrocardiography are considered as different techniques. Further, variability of foetal heart rate is thoroughly studied. Frequency components and their modifications can be analysed by applying a time-frequency approach, for a distinct understanding of the spectral components and their change over time related to foetal reactions to internal and external stimuli (such as uterine contractions). Such modifications of the power spectrum can be a sign of autonomic nervous system reactions and therefore represent additional, objective information about foetal reactivity and health. However, some limits of ultrasonic cardiotocography still remain, such as in long-term foetal surveillance, which is often recommendable mainly in risky pregnancies. In these cases, the fully non-invasive acoustic recording, foetal phonocardiography, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the so recorded foetal heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. A new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings is presented in this thesis. Different filtering and enhancement techniques, to enhance the first foetal heart sounds, were applied, so that different signal processing techniques were implemented, evaluated and compared, by identifying the strategy characterized on average by the best results. In particular, phonocardiographic signals were recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by the developed algorithm and the other provided by cardiotocographic device). The algorithm performances were tested on phonocardiographic signals recorded on pregnant women, showing reliable foetal heart rate signals, very close to the ultrasound cardiotocographic recordings, considered as reference. The algorithm was also tested by using a foetal phonocardiographic recording simulator developed and presented in this research thesis. The target was to provide a software for simulating recordings relative to different foetal conditions and recordings situations and to use it as a test tool for comparing and assessing different foetal heart rate extraction algorithms. Since there are few studies about foetal heart sounds time characteristics and frequency content and the available literature is poor and not rigorous in this area, a data collection pilot study was also conducted with the purpose of specifically characterising both foetal and maternal heart sounds. Finally, in this thesis, the use of foetal phonocardiographic and electrocardiographic methodology and their combination, are presented in order to detect foetal heart rate and other functioning anomalies. The developed methodologies, suitable for longer-term assessment, were able to detect heart beat events correctly, such as first and second heart sounds and QRS waves. The detection of such events provides reliable measures of foetal heart rate, potentially information about measurement of the systolic time intervals and foetus circulatory impedance.