16 resultados para augmented

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the air traffic management system is to ensure the safe and efficient flow of air traffic. Therefore, while augmenting efficiency, throughput and capacity in airport operations, attention has rightly been placed on doing it in a safe manner. In the control tower, many advances in operational safety have come in the form of visualization tools for tower controllers. However, there is a paradox in developing such systems to increase controllers' situational awareness: by creating additional computer displays, the controller's vision is pulled away from the outside view and the time spent looking down at the monitors is increased. This reduces their situational awareness by forcing them to mentally and physically switch between the head-down equipment and the outside view. This research is based on the idea that augmented reality may be able to address this issue. The augmented reality concept has become increasingly popular over the past decade and is being proficiently used in many fields, such as entertainment, cultural heritage, aviation, military & defense. This know-how could be transferred to air traffic control with a relatively low effort and substantial benefits for controllers’ situation awareness. Research on this topic is consistent with SESAR objectives of increasing air traffic controllers’ situation awareness and enable up to 10 % of additional flights at congested airports while still increasing safety and efficiency. During the Ph.D., a research framework for prototyping augmented reality tools was set up. This framework consists of methodological tools for designing the augmented reality overlays, as well as of hardware and software equipment to test them. Several overlays have been designed and implemented in a simulated tower environment, which is a virtual reconstruction of Bologna airport control tower. The positive impact of such tools was preliminary assessed by means of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Augmented Reality (AR) is a novel promising technology, which is gaining success in the medical field. A number of applications in surgery have been described, but few studies have been focusing on pediatric craniofacial surgery. In this research project, the Authors have been implementing a system for intraoperative surgical navigation by means of HoloLens 2 by Microsoft, applied to pediatric craniofacial surgery. The Authors tested the device in a preclinical setting first, and then moved to patients. The Authors assessed the accuracy of the HoloLens 2 by performing 36 procedures in vitro on a printed 3D model of a patient. In clinical setting, 10 patients were prospectively enrolled in the study. The virtual surgical planning was designed for each patient and uploaded onto the software which allows for the AR interface and the standard neurosurgical navigator. For each patient, the surgeon has been drawing osteotomy lines both under the guidance of HoloLens2 and of the neurosurgical navigator. The Author then checked the accuracy with calibrated CAD CAM cutting guides with different grooves, in order to assess the accuracy of the osteotomies performed. We tested levels of accuracy of ±1.5 mm and ±1mm . In the preclinical setting, the HoloLens 2 performed with levels of accuracy of 1.5 mm, whereas in the real setting, surgeons were able to trace the osteotomy lines under the AR guidance for an amount of 45% (0.4 SD) of the entire line, with an accuracy level of ±1.5 mm. This percentage lowers to 34% (0.4 SD) when assessing accuracy level of ±1 mm. The results of the same tasks for the standard navigator are 36% and 16%, for ±1.5 mm and ± 1 mm accuracy level, respectively. The Authors reported encouraging results both in the preclinical and the clinical setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent statistics have demonstrated that two of the most important causes of failures of the UAVs (Uninhabited Aerial Vehicle) missions are related to the low level of decisional autonomy of vehicles and to the man machine interface. Therefore, a relevant issue is to design a display/controls architecture which allows the efficient interaction between the operator and the remote vehicle and to develop a level of automation which allows the vehicle the decision about change in mission. The research presented in this paper focuses on a modular man-machine interface simulator for the UAV control, which simulates UAV missions, developed to experiment solution to this problem. The main components of the simulator are an advanced interface and a block defined automation, which comprehend an algorithm that implements the level of automation of the system. The simulator has been designed and developed following a user-centred design approach in order to take into account the operator’s needs in the communication with the vehicle. The level of automation has been developed following the supervisory control theory which says that the human became a supervisor who sends high level commands, such as part of mission, target, constraints, in then-rule, while the vehicle receives, comprehends and translates such commands into detailed action such as routes or action on the control system. In order to allow the vehicle to calculate and recalculate the safe and efficient route, in term of distance, time and fuel a 3D planning algorithm has been developed. It is based on considering UASs representative of real world systems as objects moving in a virtual environment (terrain, obstacles, and no fly zones) which replicates the airspace. Original obstacle avoidance strategies have been conceived in order to generate mission planes which are consistent with flight rules and with the vehicle performance constraints. The interface is based on a touch screen, used to send high level commands to the vehicle, and a 3D Virtual Display which provides a stereoscopic and augmented visualization of the complex scenario in which the vehicle operates. Furthermore, it is provided with an audio feedback message generator. Simulation tests have been conducted with pilot trainers to evaluate the reliability of the algorithm and the effectiveness and efficiency of the interface in supporting the operator in the supervision of an UAV mission. Results have revealed that the planning algorithm calculate very efficient routes in few seconds, an adequate level of workload is required to command the vehicle and that the 3D based interface provides the operator with a good sense of presence and enhances his awareness of the mission scenario and of the vehicle under his control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent developments in piston engine technology have increased performance in a very significant way. Diesel turbocharged/turbo compound engines, fuelled by jet fuels, have great performances. The focal point of this thesis is the transformation of the FIAT 1900 jtd diesel common rail engine for the installation on general aviation aircrafts like the CESSNA 172. All considerations about the diesel engine are supported by the studies that have taken place in the laboratories of the II Faculty of Engineering in Forlì. This work, mostly experimental, concerns the transformation of the automotive FIAT 1900 jtd – 4 cylinders – turbocharged – diesel common rail into an aircraft engine. The design philosophy of the aluminium alloy basement of the spark ignition engine have been transferred to the diesel version while the pistons and the head of the FIAT 1900 jtd are kept in the aircraft engine. Different solutions have been examined in this work. A first V 90° cylinders version that can develop up to 300 CV and whose weight is 30 kg, without auxiliaries and turbocharging group. The second version is a development of e original version of the diesel 1900 cc engine with an optimized crankshaft, that employ a special steel, 300M, and that is verified for the aircraft requirements. Another version with an augmented stroke and with a total displacement of 2500 cc has been examined; the result is a 30% engine heavier. The last version proposed is a 1600 cc diesel engine that work at 5000 rpm, with a reduced stroke and capable of more than 200 CV; it was inspired to the Yamaha R1 motorcycle engine. The diesel aircraft engine design keeps the bore of 82 mm, while the stroke is reduced to 64.6 mm, so the engine size is reduced along with weight. The basement weight, in GD AlSi 9 MgMn alloy, is 8,5 kg. Crankshaft, rods and accessories have been redesigned to comply to aircraft standards. The result is that the overall size is increased of only the 8% when referred to the Yamaha engine spark ignition version, while the basement weight increases of 53 %, even if the bore of the diesel version is 11% lager. The original FIAT 1900 jtd piston has been slightly modified with the combustion chamber reworked to the compression ratio of 15:1. The material adopted for the piston is the aluminium alloy A390.0-T5 commonly used in the automotive field. The piston weight is 0,5 kg for the diesel engine. The crankshaft is verified to torsional vibrations according to the Lloyd register of shipping requirements. The 300M special steel crankshaft total weight is of 14,5 kg. The result reached is a very small and light engine that may be certified for general aviation: the engine weight, without the supercharger, air inlet assembly, auxiliary generators and high pressure body, is 44,7 kg and the total engine weight, with enlightened HP pump body and the titanium alloy turbocharger is less than 100 kg, the total displacement is 1365 cm3 and the estimated output power is 220 CV. The direct conversion of automotive piston engine to aircrafts pays too huge weight penalties. In fact the main aircraft requirement is to optimize the power to weight ratio in order to obtain compact and fast engines for aeronautical use: this 1600 common rail diesel engine version demonstrates that these results can be reached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context-aware computing is currently considered the most promising approach to overcome information overload and to speed up access to relevant information and services. Context-awareness may be derived from many sources, including user profile and preferences, network information, sensor analysis; usually context-awareness relies on the ability of computing devices to interact with the physical world, i.e. with the natural and artificial objects hosted within the "environment”. Ideally, context-aware applications should not be intrusive and should be able to react according to user’s context, with minimum user effort. Context is an application dependent multidimensional space and the location is an important part of it since the very beginning. Location can be used to guide applications, in providing information or functions that are most appropriate for a specific position. Hence location systems play a crucial role. There are several technologies and systems for computing location to a vary degree of accuracy and tailored for specific space model, i.e. indoors or outdoors, structured spaces or unstructured spaces. The research challenge faced by this thesis is related to pedestrian positioning in heterogeneous environments. Particularly, the focus will be on pedestrian identification, localization, orientation and activity recognition. This research was mainly carried out within the “mobile and ambient systems” workgroup of EPOCH, a 6FP NoE on the application of ICT to Cultural Heritage. Therefore applications in Cultural Heritage sites were the main target of the context-aware services discussed. Cultural Heritage sites are considered significant test-beds in Context-aware computing for many reasons. For example building a smart environment in museums or in protected sites is a challenging task, because localization and tracking are usually based on technologies that are difficult to hide or harmonize within the environment. Therefore it is expected that the experience made with this research may be useful also in domains other than Cultural Heritage. This work presents three different approaches to the pedestrian identification, positioning and tracking: Pedestrian navigation by means of a wearable inertial sensing platform assisted by the vision based tracking system for initial settings an real-time calibration; Pedestrian navigation by means of a wearable inertial sensing platform augmented with GPS measurements; Pedestrian identification and tracking, combining the vision based tracking system with WiFi localization. The proposed localization systems have been mainly used to enhance Cultural Heritage applications in providing information and services depending on the user’s actual context, in particular depending on the user’s location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technology scaling increasingly emphasizes complexity and non-ideality of the electrical behavior of semiconductor devices and boosts interest on alternatives to the conventional planar MOSFET architecture. TCAD simulation tools are fundamental to the analysis and development of new technology generations. However, the increasing device complexity is reflected in an augmented dimensionality of the problems to be solved. The trade-off between accuracy and computational cost of the simulation is especially influenced by domain discretization: mesh generation is therefore one of the most critical steps and automatic approaches are sought. Moreover, the problem size is further increased by process variations, calling for a statistical representation of the single device through an ensemble of microscopically different instances. The aim of this thesis is to present multi-disciplinary approaches to handle this increasing problem dimensionality in a numerical simulation perspective. The topic of mesh generation is tackled by presenting a new Wavelet-based Adaptive Method (WAM) for the automatic refinement of 2D and 3D domain discretizations. Multiresolution techniques and efficient signal processing algorithms are exploited to increase grid resolution in the domain regions where relevant physical phenomena take place. Moreover, the grid is dynamically adapted to follow solution changes produced by bias variations and quality criteria are imposed on the produced meshes. The further dimensionality increase due to variability in extremely scaled devices is considered with reference to two increasingly critical phenomena, namely line-edge roughness (LER) and random dopant fluctuations (RD). The impact of such phenomena on FinFET devices, which represent a promising alternative to planar CMOS technology, is estimated through 2D and 3D TCAD simulations and statistical tools, taking into account matching performance of single devices as well as basic circuit blocks such as SRAMs. Several process options are compared, including resist- and spacer-defined fin patterning as well as different doping profile definitions. Combining statistical simulations with experimental data, potentialities and shortcomings of the FinFET architecture are analyzed and useful design guidelines are provided, which boost feasibility of this technology for mainstream applications in sub-45 nm generation integrated circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impairment of postural control is a common consequence of Parkinson's disease (PD) that becomes more and more critical with the progression of the disease, in spite of the available medications. Postural instability is one of the most disabling features of PD and induces difficulties with postural transitions, initiation of movements, gait disorders, inability to live independently at home, and is the major cause of falls. Falls are frequent (with over 38% falling each year) and may induce adverse consequences like soft tissue injuries, hip fractures, and immobility due to fear of falling. As the disease progresses, both postural instability and fear of falling worsen, which leads patients with PD to become increasingly immobilized. The main aims of this dissertation are to: 1) detect and assess, in a quantitative way, impairments of postural control in PD subjects, investigate the central mechanisms that control such motor performance, and how these mechanism are affected by levodopa; 2) develop and validate a protocol, using wearable inertial sensors, to measure postural sway and postural transitions prior to step initiation; 3) find quantitative measures sensitive to impairments of postural control in early stages of PD and quantitative biomarkers of disease progression; and 4) test the feasibility and effects of a recently-developed audio-biofeedback system in maintaining balance in subjects with PD. In the first set of studies, we showed how PD reduces functional limits of stability as well as the magnitude and velocity of postural preparation during voluntary, forward and backward leaning while standing. Levodopa improves the limits of stability but not the postural strategies used to achieve the leaning. Further, we found a strong relationship between backward voluntary limits of stability and size of automatic postural response to backward perturbations in control subjects and in PD subjects ON medication. Such relation might suggest that the central nervous system presets postural response parameters based on perceived maximum limits and this presetting is absent in PD patients OFF medication but restored with levodopa replacement. Furthermore, we investigated how the size of preparatory postural adjustments (APAs) prior to step initiation depend on initial stance width. We found that patients with PD did not scale up the size of their APA with stance width as much as control subjects so they had much more difficulty initiating a step from a wide stance than from a narrow stance. This results supports the hypothesis that subjects with PD maintain a narrow stance as a compensation for their inability to sufficiently increase the size of their lateral APA to allow speedy step initiation in wide stance. In the second set of studies, we demonstrated that it is possible to use wearable accelerometers to quantify postural performance during quiet stance and step initiation balance tasks in healthy subjects. We used a model to predict center of pressure displacements associated with accelerations at the upper and lower back and thigh. This approach allows the measurement of balance control without the use of a force platform outside the laboratory environment. We used wearable accelerometers on a population of early, untreated PD patients, and found that postural control in stance and postural preparation prior to a step are impaired early in the disease when the typical balance and gait intiation symptoms are not yet clearly manifested. These novel results suggest that technological measures of postural control can be more sensitive than clinical measures. Furthermore, we assessed spontaneous sway and step initiation longitudinally across 1 year in patients with early, untreated PD. We found that changes in trunk sway, and especially movement smoothness, measured as Jerk, could be used as an objective measure of PD and its progression. In the third set of studies, we studied the feasibility of adapting an existing audio-biofeedback device to improve balance control in patients with PD. Preliminary results showed that PD subjects found the system easy-to-use and helpful, and they were able to correctly follow the audio information when available. Audiobiofeedback improved the properties of trunk sway during quiet stance. Our results have many implications for i) the understanding the central mechanisms that control postural motor performance, and how these mechanisms are affected by levodopa; ii) the design of innovative protocols for measuring and remote monitoring of motor performance in the elderly or subjects with PD; and iii) the development of technologies for improving balance, mobility, and consequently quality of life in patients with balance disorders, such as PD patients with augmented biofeedback paradigms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Images of a scene, static or dynamic, are generally acquired at different epochs from different viewpoints. They potentially gather information about the whole scene and its relative motion with respect to the acquisition device. Data from different (in the spatial or temporal domain) visual sources can be fused together to provide a unique consistent representation of the whole scene, even recovering the third dimension, permitting a more complete understanding of the scene content. Moreover, the pose of the acquisition device can be achieved by estimating the relative motion parameters linking different views, thus providing localization information for automatic guidance purposes. Image registration is based on the use of pattern recognition techniques to match among corresponding parts of different views of the acquired scene. Depending on hypotheses or prior information about the sensor model, the motion model and/or the scene model, this information can be used to estimate global or local geometrical mapping functions between different images or different parts of them. These mapping functions contain relative motion parameters between the scene and the sensor(s) and can be used to integrate accordingly informations coming from the different sources to build a wider or even augmented representation of the scene. Accordingly, for their scene reconstruction and pose estimation capabilities, nowadays image registration techniques from multiple views are increasingly stirring up the interest of the scientific and industrial community. Depending on the applicative domain, accuracy, robustness, and computational payload of the algorithms represent important issues to be addressed and generally a trade-off among them has to be reached. Moreover, on-line performance is desirable in order to guarantee the direct interaction of the vision device with human actors or control systems. This thesis follows a general research approach to cope with these issues, almost independently from the scene content, under the constraint of rigid motions. This approach has been motivated by the portability to very different domains as a very desirable property to achieve. A general image registration approach suitable for on-line applications has been devised and assessed through two challenging case studies in different applicative domains. The first case study regards scene reconstruction through on-line mosaicing of optical microscopy cell images acquired with non automated equipment, while moving manually the microscope holder. By registering the images the field of view of the microscope can be widened, preserving the resolution while reconstructing the whole cell culture and permitting the microscopist to interactively explore the cell culture. In the second case study, the registration of terrestrial satellite images acquired by a camera integral with the satellite is utilized to estimate its three-dimensional orientation from visual data, for automatic guidance purposes. Critical aspects of these applications are emphasized and the choices adopted are motivated accordingly. Results are discussed in view of promising future developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IL-33/ST2 axis is known to promote Th2 immune responses and has been linked to several autoimmune and inflammatory disorders, including inflammatory bowel disease (IBD), and recent evidences show that it can regulate eosinophils (EOS) infiltration and function. Based also on the well documented relationship between EOS and IBD, we assessed the role of IL-33-mediated eosinophilia and ileal inflammation in SAMP1/YitFc (SAMP) murine model of Th1/Th2 chronic enteritis, and we found that IL-33 is related to inflammation progression and EOS infiltration as well as IL-5 and eotaxins increase. Administering IL-33 to SAMP and AKR mice augmented eosinophilia, eotaxins mRNA expression and Th2 molecules production, whereas blockade of ST2 and/or typical EOS molecules, such as IL-5 and CCR3, resulted in a marked decrease of inflammation, EOS infiltration, IL-5 and eotaxins mRNA expression and Th2 cytokines production. Human data supported mice’s showing an increased colocalization of IL-33 and EOS in the colon mucosa of UC patients, as well as an augmented IL-5 and eotaxins mRNA expression, when compared to non-UC. Lastly we analyzed SAMP raised in germ free (GF) condition to see the microbiota effect on IL-33 expression and Th2 responses leading to chronic intestinal inflammation. We found a remarkable decrease in ileal IL-33 and Th2 cytokines mRNA expression as well as EOS infiltration in GF versus normal SAMP with comparable inflammatory scores. Moreover, EOS depletion in normal SAMP didn’t affect IL-33 mRNA expression. These data demonstrate a pathogenic role of IL-33-mediated eosinophilia in chronic intestinal inflammation, and that blockade of IL-33 and/or downstream EOS activation may represent a novel therapeutic modality to treat patients with IBD. Also they highlight the gut microbiota role in IL-33 production, and the following EOS infiltration in the intestinal mucosa, confirming that the microbiota is essential in mounting potent Th2 response leading to chronic ileitis in SAMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il mio progetto di ricerca è nato da una riflessione concernente una domanda fondamentale che si pongono gli studiosi della comunicazione digitale: le attuali tecnologie mediali che hanno creato nuovi modelli comunicativi e inaugurato inedite modalità di interrelazione sociale conducono a un dualismo digitale o a una realtà aumentata? Si è cercato di dare una risposta a questo interrogativo attraverso un’indagine compiuta su un social network, Facebook, che è la piattaforma digitale più diffusa nel mondo. L’analisi su Facebook, è stata preceduta da una riflessione sui concetti dello spazio e del tempo elaborati dalla letteratura filosofica e sociologica. Tale riflessione è stata propedeutica all’analisi volta a cogliere l’impatto che hanno avuto sulla relazionalità intersoggettiva e sulle dinamiche di realizzazione del sé l’interazione semantica nello spazio delimitato della piazza tradizionale, la molteplicità e la potenza seduttiva delle offerte comunicative dei media elettronici nella estensione della piazza massmediale e soprattutto la nascita e l’affermazione del cyberspazio come luogo della comunicazione nella piazza digitale. Se la peculiarità della piazza tradizionale è nel farsi dei rapporti face to face e quella della piazza massmediale nella funzione rilevante della fonte rispetto al destinatario, la caratteristica della piazza digitale consiste nella creazione autonoma di un orizzonte inclusivo che comprende ogni soggetto che si collega con la rete il quale, all’interno del network, riveste il doppio ruolo di consumatore e di produttore di messaggi. Con l’avvento dell’online nella prassi della relazionalità sociale si producono e si attuano due piani di interazioni comunicative, uno relativo all’online e l’altro relativo all’offline. L’ipotesi di lavoro che è stata guida della mia ricerca è che la pervasività dell’online conduca all’integrazione dei due segmenti comunicativi: l’esperienza della comunicazione digitale si inserisce nella prassi sociale quotidiana arricchendo i rapporti semantici propri della relazione face to face e influenzandoli profondamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses the issue of generating texts in the style of an existing author, that also satisfy structural constraints imposed by the genre of the text. Although Markov processes are known to be suitable for representing style, they are difficult to control in order to satisfy non-local properties, such as structural constraints, that require long distance modeling. The framework of Constrained Markov Processes allows to precisely generate texts that are consistent with a corpus, while being controllable in terms of rhymes and meter. Controlled Markov processes consist in reformulating Markov processes in the context of constraint satisfaction. The thesis describes how to represent stylistic and structural properties in terms of constraints in this framework and how this approach can be used for the generation of lyrics in the style of 60 differents authors An evaluation of the desctibed method is provided by comparing it to both pure Markov and pure constraint-based approaches. Finally the thesis describes the implementation of an augmented text editor, called Perec. Perec is intended to improve creativity, by helping the user to write lyrics and poetry, exploiting the techniques presented so far.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La neuroriabilitazione è un processo attraverso cui individui affetti da patologie neurologiche mirano al conseguimento di un recupero completo o alla realizzazione del loro potenziale ottimale benessere fisico, mentale e sociale. Elementi essenziali per una riabilitazione efficace sono: una valutazione clinica da parte di un team multidisciplinare, un programma riabilitativo mirato e la valutazione dei risultati conseguiti mediante misure scientifiche e clinicamente appropriate. Obiettivo principale di questa tesi è stato sviluppare metodi e strumenti quantitativi per il trattamento e la valutazione motoria di pazienti neurologici. I trattamenti riabilitativi convenzionali richiedono a pazienti neurologici l’esecuzione di esercizi ripetitivi, diminuendo la loro motivazione. La realtà virtuale e i feedback sono in grado di coinvolgerli nel trattamento, permettendo ripetibilità e standardizzazione dei protocolli. È stato sviluppato e valutato uno strumento basato su feedback aumentati per il controllo del tronco. Inoltre, la realtà virtuale permette l’individualizzare il trattamento in base alle esigenze del paziente. Un’applicazione virtuale per la riabilitazione del cammino è stata sviluppata e testata durante un training su pazienti di sclerosi multipla, valutandone fattibilità e accettazione e dimostrando l'efficacia del trattamento. La valutazione quantitativa delle capacità motorie dei pazienti viene effettuata utilizzando sistemi di motion capture. Essendo il loro uso nella pratica clinica limitato, una metodologia per valutare l’oscillazione delle braccia in soggetti parkinsoniani basata su sensori inerziali è stata proposta. Questi sono piccoli, accurati e flessibili ma accumulano errori durante lunghe misurazioni. È stato affrontato questo problema e i risultati suggeriscono che, se il sensore è sul piede e le accelerazioni sono integrate iniziando dalla fase di mid stance, l’errore e le sue conseguenze nella determinazione dei parametri spaziali sono contenuti. Infine, è stata presentata una validazione del Kinect per il tracking del cammino in ambiente virtuale. Risultati preliminari consentono di definire il campo di utilizzo del sensore in riabilitazione.