24 resultados para atoms and molecules
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis concerns the study of complex conformational surfaces and tautomeric equilibria of molecules and molecular complexes by quantum chemical methods and rotational spectroscopy techniques. In particular, the focus of this research is on the effects of substitution and noncovalent interactions in determining the energies and geometries of different conformers, tautomers or molecular complexes. The Free-Jet Absorption Millimeter Wave spectroscopy and the Pulsed-Jet Fourier Transform Microwave spectroscopy have been applied to perform these studies and the obtained results showcase the suitability of these techniques for the study of conformational surfaces and intermolecular interactions. The series of investigations of selected medium-size molecules and complexes have shown how different instrumental setups can be used to obtain a variety of results on molecular properties. The systems studied, include molecules of biological interest such as anethole and molecules of astrophysical interest such as N-methylaminoethanol. Moreover halogenation effects have been investigated on halogen substituted tautomeric systems (5-chlorohydroxypyridine and 6-chlorohydroxypyridine), where it has shown that the position of the inserted halogen atom affects the prototropic equilibrium. As for fluorination effects, interesting results have been achieved investigating some small complexes where a molecule of water is used as a probe to reveal the changes on the electrostatic potential of different fluorinated compounds: 2-fluoropyridine, 3-fluoropyridine and penta-fluoropyridine. While in the case of the molecular complex between water and 2-fluoropyridine and 3-fluoropyridine the geometry of the complex with one water molecule is analogous to that of pyridine with the water molecule linked to the pyridine nitrogen, the case of pentafluoropyridine reveals the effect of perfluorination and the water oxygen points towards the positive center of the pyridine ring. Additional molecular adducts with a molecule of water have been analyzed (benzylamine-water and acrylic acid-water) in order to reveal the stabilizing driving forces that characterize these complexes.
Resumo:
The stable increase in average life expectancy and the consecutive increase in the number of cases of bone related diseases has led to a growing interest in the development of materials that can promote bone repair and/or replacement. Among the best candidates are those materials that have a high similarity to bones, in terms of composition, structure, morphology and functionality. Biomineralized tissue, and thus also bones, have three main components: water, an organic matrix and an inorganic deposit. In vertebrates, the inorganic deposit consists of what is called biological apatite, which slightly differ from stoichiometric hydroxyapatite (HA) both in crystallographic terms and in the presence of foreign atoms and species. This justifies the great attention towards calcium phosphates, which show excellent biocompatibility and bioactivity. The performances of the material and the response of the biological tissue can be further improved through their functionalization with ions, biologically active molecules and nanostructures. This thesis focuses on several possible functionalizations of calcium phosphates, and their effects on chemical properties and biological performances. In particular, the functionalizing agents include several biologically relevant ions, such as Cobalt (Co), Manganese (Mn), Strontium (Sr) and Zinc (Zn); two organic molecules, a flavonoid (Quercetin) and a polyphenol (Curcumin); and nanoparticles, namely tungsten oxide (WO3) NPs. Functionalization was carried out on various calcium phosphates: dicalcium phosphate dihydrate (DCPD), dicalcium phosphate anhydrous (DCPA) and hydroxyapatite (HA). Two different strategies of functionalization were applied: direct synthesis and adsorption from solution. Finally, a chapter is devoted to a preliminary study on the development of cements based on some of the functionalized phosphates obtained.
Resumo:
Ischemic preconditioning is a complex cardioprotective phenomenon that involves adaptive changes in cells and molecules. This adaptation occurs in a biphasic pattern: an early phase which develops after 1-2 h, and a late phase that develops after 12-24 h. While it is widely accepted that reactive oxygen species (ROS) are strongly involved in triggering ischemic preconditiong, it is not clear if they play a major role in the early or late phase of preconditioning and which are the mechanisms involved. Methylglyoxal, a metabolic compound formed mainly from the glycolytic intermediate glyceraldehyde-3-phosphate., is a precursor of advanced glycation end product (AGEs) .It is more reactive than glucose and shows a stronger ability to cross-link with protein amino groups to form AGEs. Methylglyoxal induced cytotoxicity may be at least partially responsible for cardiovascular and Alzheimer diseases. Methylglyoxal omeostasis is controlled by the glyoxalase system that consists of two enzyme, glyoxalase 1 (GLO1) and glyoxalase 2. In a recent study it was demonstrated that the transcriptional levels of GLO1 are controlled by NF-E2-related factor 2 (Nrf2). The isothiocyanate sulforaphane, derived from the hydrolysis of glucoraphanin abundantly present in broccoli, represents one of the most potent inducers of phase II enzymes through the Keap1–Nrf2 pathway. The aim of this thesis was evaluated molecular mechanisms in cardio- and neuroprotection and the possibility of modulation by nutraceutical phytocomponents This thesis show to one side that the protection induced by H2O2 is mediated by detoxifying and antioxidant phase II enzymes induction, regulated, not only by transcriptional factor Nrf2, but also by Nrf1; on the other side our data represent an innovative result because for the first time it was demonstrated the possibility of inducing GLO1 by SF supplementation.
Resumo:
Objects with complex shape and functions have always attracted attention and interest. The morphological diversity and complexity of naturally occurring forms and patterns have been a motivation for humans to copy and adopt ideas from Nature to achieve functional, aesthetic and social value. Biomimetics is addressed to the design and development of new synthetic materials using strategies adopted by living organisms to produce biological materials. In particular, biomineralized tissues are often sophisticate composite materials, in which the components and the interfaces between them have been defined and optimized, and that present unusual and optimal chemical-physical, morphological and mechanical properties. Moreover, biominerals are generally produced by easily traceable raw materials, in aqueous media and at room pressure and temperature, that is through cheap process and materials. Thus, it is not surprising that the idea to mimic those strategies proper of Nature has been employed in several areas of applied sciences, such as for the preparation of liquid crystals, ceramic thin films computer switches and many other advanced materials. On this basis, this PhD thesis is focused on the investigation of the interaction of biologically active ions and molecules with calcium phosphates with the aim to develop new materials for the substitution and repair of skeletal tissue, according to the following lines: I. Modified calcium phosphates. A relevant part of this PhD thesis has been addressed to study the interaction of Strontium with calcium phosphates. It was demonstrated that strontium ion can substitute for calcium into hydroxyapatite, causing appreciable structural and morphological modifications. The detailed structural analysis carried out on the nanocrystals at different strontium content provided new insight into its interaction with the structure of hydroxyapatite. At variance with the behaviour of Sr towards HA, it was found that this ion inhibits the synthesis of octacalcium phosphate. However, it can substitute for calcium in this structure up to 15 atom %, in agreement with the increase of the cell parameters observed on increasing ion concentration. A similar behaviour was found for Magnesium ion, whereas Manganese inhibits the synthesis of octacalcium phosphate and it promotes the precipitation of dicalcium phosphate dehydrate. It was also found that Strontium affects the kinetics of the reaction of hydrolysis of α-TCP. It inhibits the conversion from α-TCP to hydroxyapatite. However, the resulting apatitic phase contains significant amounts of Sr2+ suggesting that the addition of Sr2+ to the composition of α-TCP bone cements could be successfully exploited for its local delivery in bone defects. The hydrolysis of α-TCP has been investigated also in the presence of increasing amounts of gelatin: the results indicated that this biopolymer accelerates the hydrolysis reaction and promotes the conversion of α-TCP into OCP, suggesting that its addition in the composition of calcium phosphate cements can be employed to modulate the OCP/HA ratio, and as a consequence the solubility, of the set cement. II. Deposition of modified calcium phosphates on metallic substrates. Coating with a thin film of calcium phosphates is frequently applied on the surface of metallic implants in order to combine the high mechanical strength of the metal with the excellent bioactivity of the calcium phosphates surface layers. During this PhD thesis, thank to the collaboration with prof. I.N. Mihailescu, head of the Laser-Surface-Plasma Interactions Laboratory (National Institute for Lasers, Plasma and Radiation Physics – Laser Department, Bucharest) Pulsed Laser Deposition has been successfully applied to deposit thin films of Sr substituted HA on Titanium substrates. The synthesized coatings displayed a uniform Sr distribution, a granular surface and a good degree of crystallinity which slightly decreased on increasing Sr content. The results of in vitro tests carried out on osteoblast-like and osteoclast cells suggested that the presence of Sr in HA thin films can enhance the positive effect of HA coatings on osteointegration and bone regeneration, and prevent undesirable bone resorption. The possibility to introduce an active molecule in the implant site was explored using Matrix Assisted Pulsed Laser Evaporation to deposit hydroxyapatite nanocrystals at different content of alendronate, a bisphosphonate widely employed in the treatments of pathological diseases associated to bone loss. The coatings displayed a good degree of crystallinity, and the results of in vitro tests indicated that alendronate promotes proliferation and differentiation of osteoblasts even when incorporated into hydroxyapatite. III. Synthesis of drug carriers with a delayed release modulated by a calcium phosphate coating. A core-shell system for modulated drug delivery and release has been developed through optimization of the experimental conditions to cover gelatin microspheres with a uniform layer of calcium phosphate. The kinetics of the release from uncoated and coated microspheres was investigated using aspirin as a model drug. It was shown that the presence of the calcium phosphate shell delays the release of aspirin and allows to modulate its action.
Resumo:
The thesis reports the synthesis, and the chemical, structural and spectroscopic characterization of a series of new Rhodium and Au-Fe carbonyl clusters. Most new high-nuclearity rhodium carbonyl clusters have been obtained by redox condensation of preformed rhodium clusters reacting with a species in a different oxidation state generated in situ by mild oxidation. In particular the starting Rh carbonyl clusters is represented by the readily available [Rh7(CO)16]3- 9 compound. The oxidized species is generated in situ by reaction of the above with a stoichiometric defect of a mild oxidizing agents such as [M(H2O)x]n+ aquo complexes possessing different pKa’s and Mn+/M potentials. The experimental results are roughly in keeping with the conclusion that aquo complexes featuring E°(Mn+/M) < ca. -0.20 V do not lead to the formation of hetero-metallic Rh clusters, probably because of the inadequacy of their redox potentials relative to that of the [Rh7(CO)16]3-/2- redox couple. Only homometallic cluster s such as have been fairly selectively obtained. As a fallout of the above investigations, also a convenient and reproducible synthesis of the ill-characterized species [HnRh22(CO)35]8-n has been discovered. The ready availability of the above compound triggered both its complete spectroscopic and chemical characterization. because it is the only example of Rhodium carbonyl clusters with two interstitial metal atoms. The presence of several hydride atoms, firstly suggested by chemical evidences, has been implemented by ESI-MS and 1H-NMR, as well as new structural characterization of its tetra- and penta-anion. All these species display redox behaviour and behave as molecular capacitors. Their chemical reactivity with CO gives rise to a new series of Rh22 clusters containing a different number of carbonyl groups, which have been likewise fully characterized. Formation of hetero-metallic Rh clusters was only observed when using SnCl2H2O as oxidizing agent because. Quite all the Rh-Sn carbonyl clusters obtained have icosahedral geometry. The only previously reported example of an icosahedral Rh cluster with an interstitial atom is the [Rh12Sb(CO)27]3- trianion. They have very similar metal framework, as well as the same number of CO ligands and, consequently, cluster valence electrons (CVEs). .A first interesting aspect of the chemistry of the Rh-Sn system is that it also provides icosahedral clusters making exception to the cluster-borane analogy by showing electron counts from 166 to 171. As a result, the most electron-short species, namely [Rh12Sn(CO)25]4- displays redox propensity, even if disfavoured by the relatively high free negative charge of the starting anion and, moreover, behaves as a chloride scavenger. The presence of these bulky interstitial atoms results in the metal framework adopting structures different from a close-packed metal lattice and, above all, imparts a notable stability to the resulting cluster. An organometallic approach to a new kind of molecular ligand-stabilized gold nanoparticles, in which Fe(CO)x (x = 3,4) moieties protect and stabilize the gold kernel has also been undertaken. As a result, the new clusters [Au21{Fe(CO)4}10]5-, [Au22{Fe(CO)4}12]6-, Au28{Fe(CO)3}4{Fe(CO)4}10]8- and [Au34{Fe(CO)3}6{Fe(CO)4}8]6- have been isolated and characterized. As suggested by concepts of isolobal analogies, the Fe(CO)4 molecular fragment may display the same ligand capability of thiolates and go beyond. Indeed, the above clusters bring structural resemblance to the structurally characterized gold thiolates by showing Fe-Au-Fe, rather than S-Au-S, staple motives. Staple motives, the oxidation state of surface gold atoms and the energy of Au atomic orbitals are likely to concur in delaying the insulator-to-metal transition as the nuclearity of gold thiolates increases, relative to the more compact transition-metal carbonyl clusters. Finally, a few previously reported Au-Fe carbonyl clusters have been used as precursors in the preparation of supported gold catalysts. The catalysts obtained are active for toluene oxidation and the catalytic activity depends on the Fe/Au cluster loading over TiO2.
Resumo:
The following Ph.D work was mainly focused on catalysis, as a key technology, to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and an assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry was briefly discussed and illustrated via an analysis of some selected and relevant examples. Afterwards, as a continuation of the ongoing interest in Dr. Marco Bandini’s group on organometallic and organocatalytic processes, I addressed my efforts to the design and development of novel catalytic green methodologies for the synthesis of enantiomerically enriched molecules. In the first two projects the attention was focused on the employment of solid supports to carry out reactions that still remain a prerogative of omogeneous catalysis. Firstly, particular emphasis was addressed to the discovery of catalytic enantioselective variants of nitroaldol condensation (commonly termed Henry reaction), using a complex consisting in a polyethylene supported diamino thiopene (DATx) ligands and copper as active species. In the second project, a new class of electrochemically modified surfaces with DATx palladium complexes was presented. The DATx-graphite system proved to be efficient in promoting the Suzuki reaction. Moreover, in collaboration with Prof. Wolf at the University of British Columbia (Vancouver), cyclic voltammetry studies were reported. This study disclosed new opportunities for carbon–carbon forming processes by using heterogeneous, electrodeposited catalyst films. A straightforward metal-free catalysis allowed the exploration around the world of organocatalysis. In fact, three different and novel methodologies, using Cinchona, Guanidine and Phosphine derivatives, were envisioned in the three following projects. An interesting variant of nitroaldol condensation with simple trifluoromethyl ketones and also their application in a non-conventional activation of indolyl cores by Friedel-Crafts-functionalization, led to two novel synthetic protocols. These approaches allowed the preparation of synthetically useful trifluoromethyl derivatives bearing quaternary stereocenters. Lastly, in the sixth project the first γ-alkylation of allenoates with conjugated carbonyl compounds was envisioned. In the last part of this Ph.D thesis bases on an extra-ordinary collaboration with Prof. Balzani and Prof. Gigli, I was involved in the synthesis and characterization of a new type of heteroleptic cyclometaled-Ir(III) complexes, bearing bis-oxazolines (BOXs) as ancillary ligands. The new heteroleptic complexes were fully characterized and in order to examine the electroluminescent properties of FIrBOX(CH2), an Organic Light Emitting Device was realized.
Resumo:
The scope of my research project is to produce and characterize new crystalline forms of organic compounds, focusing the attention on co-crystals and then transferring these notions on APIs to produce co-crystals of potential interest in the pharmaceutical field. In the first part of this work co-crystallization experiments were performed using as building blocks the family of aliphatic dicarboxylic acids HOOC-(CH2)n-COOH, with n= 2-8. This class of compounds has always been an object of study because it is characterized by an interesting phenomenon of alternation of melting points: the acids with an even number of carbon atoms show a melting point higher than those with an odd one. The acids were co-crystallized with four dipyridyl molecules (formed by two pyridine rings with a different number of bridging carbon atoms) through the formation of intermolecular interactions N•••(H)O. The bases used were: 4,4’-bipyridine (BPY), 1,2-bis(4-pyridyl)ethane (BPA), 1,2-(di-4-pyridyl)ethylene (BPE) and 1,2-bis(4-pyridyl)propane (BPP). The co-crystals obtained by solution synthesis were characterized by different solid-state techniques to determine the structure and to see how the melting points in co-crystals change. In the second part of this study we tried to obtain new crystal forms of compounds of pharmaceutical interest. The APIs studied are: O-desmethylvenlafaxine, Lidocaine, Nalidixic Acid and Sulfadiazine. Each API was subjected to Polymorph Screening and Salt/Co-crystal Screening experiments to identify new crystal forms characterized by different properties. In a typical Salt/Co-crystal Screening the sample was made to react with a co-former (solid or liquid) through different methods: crystallization by solution, grinding, kneading and solid-gas reactions. The new crystal forms obtained were characterized by different solid state techniques (X-ray single crystal diffraction, X-ray powder diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Evolved gas analysis, FT-IR – ATR, Solid State N.M.R).
Resumo:
The studies conducted during my Phd thesis were focused on two different directions: 1. In one case we tried to face some long standing problems of the asymmetric aminocatalysis as the activation of encumbered carbonyl compounds and the control of the diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one. In this section (Challenges) was described the asymmetric aziridination of ,-unsaturated ketones, the activation of ,-unsaturated -branched aldehydes and the Michael addition of oxindoles to enals and enones. For the activation via iminium ion formation of sterically demanding substrates, as ,-unsaturated ketones and ,-unsaturated -branched aldehydes, we exploited a chiral primary amine in order to overcome the problem of the iminium ion formation between the catalyst and encumbered carbonylic componds. For the control of diastereoisomeric ratio in the diastero- and enantioselective construction of all carbon substituted quaternary stereocenters adjacent a tertiary one we envisaged that a suitable strategy was the Michael addition to 3 substituted oxindoles to enals activated via LUMO-lowering catalysis. In this synthetic protocol we designed a new bifunctional catalyst with an amine moiety for activate the aldehyde and a tioureidic fragment for direct the approach of the oxindole. This part of the thesis (Challenges) could be considered pure basic research, where the solution of the synthetic problem was the goal itself of the research. 2. In the other hand (Molecules) we applied our knowledge about the carbonylic compounds activation and about cascade reaction to the synthesis of three new classes of spirooxindole in enantiopure form. The construction of libraries of these bioactive compounds represented a scientific bridge between medicinal chemistry or biology and the asymmetric catalysis.
Resumo:
This thesis focuses on studying molecular structure and internal dynamics by using pulsed jet Fourier transform microwave (PJ-FTMW) spectroscopy combined with theoretical calculations. Several kinds of interesting chemical problems are investigated by analyzing the MW spectra of the corresponding molecular systems. First, the general aspects of rotational spectroscopy are summarized, and then the basic theory on molecular rotation and experimental method are described briefly. ab initio and density function theory (DFT) calculations that used in this thesis to assist the assignment of rotational spectrum are also included. From chapter 3 to chapter 8, several molecular systems concerning different kind of general chemical problems are presented. In chapter 3, the conformation and internal motions of dimethyl sulfate are reported. The internal rotations of the two methyl groups split each rotational transition into several components line, allowing for the determination of accurate values of the V3 barrier height to internal rotation and of the orientation of the methyl groups with respect to the principal axis system. In chapter 4 and 5, the results concerning two kinds of carboxylic acid bi-molecules, formed via two strong hydrogen bonds, are presented. This kind of adduct is interesting also because a double proton transfer can easily take place, connecting either two equivalent or two non-equivalent molecular conformations. Chapter 6 concerns a medium strong hydrogen bonded molecular complex of alcohol with ether. The dimer of ethanol-dimethylether was chosen as the model system for this purpose. Chapter 7 focuses on weak halogen…H hydrogen bond interaction. The nature of O-H…F and C-H…Cl interaction has been discussed through analyzing the rotational spectra of CH3CHClF/H2O. In chapter 8, two molecular complexes concerning the halogen bond interaction are presented.
Resumo:
Nanoscience is an emerging and fast-growing field of science with the aim of manipulating nanometric objects with dimension below 100 nm. Top down approach is currently used to build these type of architectures (e.g microchips). The miniaturization process cannot proceed indefinitely due to physical and technical limitations. Those limits are focusing the interest on the bottom-up approach and construction of nano-objects starting from “nano-bricks” like atoms, molecules or nanocrystals. Unlike atoms, molecules can be “fully programmable” and represent the best choice to build up nanostructures. In the past twenty years many examples of functional nano-devices able to perform simple actions have been reported. Nanocrystals which are often considered simply nanostructured materials, can be active part in the development of those nano-devices, in combination with functional molecules. The object of this dissertation is the photophysical and photochemical investigation of nano-objects bearing molecules and semiconductor nanocrystals (QDs) as components. The first part focuses on the characterization of a bistable rotaxane. This study, in collaboration with the group of Prof. J.F. Stoddart (Northwestern University, Evanston, Illinois, USA) who made the synthesis of the compounds, shows the ability of this artificial machine to operate as bistable molecular-level memory under kinetic control. The second part concerns the study of the surface properties of luminescent semiconductor nanocrystals (QDs) and in particular the effect of acid and base on the spectroscopical properties of those nanoparticles. In this section is also reported the work carried out in the laboratory of Prof H. Mattoussi (Florida State University, Tallahassee, Florida, USA), where I developed a novel method for the surface decoration of QDs with lipoic acid-based ligands involving the photoreduction of the di-thiolane moiety.
Resumo:
Chiroptical spectroscopies play a fundamental role in pharmaceutical analysis for the stereochemical characterisation of bioactive molecules, due to the close relationship between chirality and optical activity and the increasing evidence of stereoselectivity in the pharmacological and toxicological profiles of chiral drugs. The correlation between chiroptical properties and absolute stereochemistry, however, requires the development of accurate and reliable theoretical models. The present thesis will report the application of theoretical chiroptical spectroscopies in the field of drug analysis, with particular emphasis on the huge influence of conformational flexibility and solvation on chiroptical properties and on the main computational strategies available to describe their effects by means of electronic circular dichroism (ECD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations. The combination of experimental chiroptical spectroscopies with state-of-the-art computational methods proved to be very efficient at predicting the absolute configuration of a wide range of bioactive molecules (fluorinated 2-arylpropionic acids, β-lactam derivatives, difenoconazole, fenoterol, mycoleptones, austdiol). The results obtained for the investigated systems showed that great care must be taken in describing the molecular system in the most accurate fashion, since chiroptical properties are very sensitive to small electronic and conformational perturbations. In the future, the improvement of theoretical models and methods, such as ab initio molecular dynamics, will benefit pharmaceutical analysis in the investigation of non-trivial effects on the chiroptical properties of solvated systems and in the characterisation of the stereochemistry of complex chiral drugs.
Resumo:
In this thesis we investigated the versatility and the potential applications of different kinds of alkylidene malonates, acetoacetates, malonamides and acetoacetoamides. Our research group devoted great attention to this kind of compounds since alkylidenes can be considered important intermediates in the synthesis of several scaffolds, to be inserted into molecules of potential biological and pharmaceutical interest. The increasing use of alkylidenes is due to their ability to react as unsaturated electrophiles and to the possibility to exploit them as intermediates for the introduction of different kind of functionalities.The preparation of alkylidene malonates, acetoacetates, malonamides and acetoacetoamides is presented in chapter 1. This section deals with different preparation methods of alkylidenes that we developed during the last few years and to the technologies involved for each synthetic protocol. The reactivity that allowed to use the alkylidenes as intermediates in the synthesis of scaffolds for biologically active compounds is shown in chapter 2. In particular, we will discuss the most important reactions used to obtain the desired molecules, and we will focus on the most interesting aspects of these latter ones. Finally, chapter 3 will illustrate the potential applications and the related syntheses of potential bioactive compounds. The synthesized molecules find application in several fields and for this reason we considered each class of compounds in its related branch of interest.
Resumo:
The spectroscopic investigation of the gas-phase molecules relevant for the chemistry of the atmosphere and of the interstellar medium has been performed. Two types of molecules have been studied, linear and symmetric top. Several experimental high-resolution techniques have been adopted, exploiting the spectrometers available in Bologna, Venezia, Brussels and Wuppertal: Fourier-Transform-Infrared Spectroscopy, Cavity-Ring-Down Spectroscopy, Cavity-Enhanced-Absorption Spectroscopy, Tunable-Diode-Laser Spectroscopy. Concerning linear molecules, the spectra of a number of isotopologues of acetylene, 12C2D2, H12C13CD, H13C12CD, 13C12CD2, of DCCF and monodeuterodiacetylene DC4H, have been studied, from 320 to 6800 cm-1. This interval covers bending, stretching, overtone and combination bands, the focus on specific ranges depending on the molecule. In particular, the analysis of the bending modes has been performed for 12C2D2 (450-2200 cm-1), 13C12CD2 (450-1700 cm-1), DCCF (320-850cm-1) and DC4H (450-1100 cm-1), of the stretching-bending system for 12C2D2 (450-5500 cm-1) and of the 2nu1 and combination bands up to four quanta of excitation for H12C13CD, H13C12CD and 13C12CD2 (6130-6800 cm-1). In case of symmetric top molecules, CH3CCH has been investigated in the 2nu1 region (6200-6700 cm-1), which is particularly congested due to the huge network of states affected by Coriolis and anharmonic interactions. The bending fundamentals of 15ND3 (450-2700 cm-1) have been studied for the first time, characterizing completely the bending states, v2 = 1 and v4 = 1, whereas the analysis of the stretching modes, which evidenced the presence of several perturbations, has been started. Finally, the fundamental band nu4 of CF3Br in the 1190-1220 cm-1 region has been investigated. Transitions belonging to the CF379Br and CF381Br molecules have been identified since the spectra were recorded using a sample containing the two isotopologues in natural abundance. This allowed the characterization of the v4 = 1 state for both isotopologues and the evaluation of the bromine isotopic splitting.
Resumo:
Cancer is a multifactorial disease characterized by a very complex etiology. Basing on its complex nature, a promising therapeutic strategy could be based by the “Multi-Target-Directed Ligand” (MTDL) approach, based on the assumption that a single molecule could hit several targets responsible for the pathology. Several agents acting on DNA are clinically used, but the severe deriving side effects limit their therapeutic application. G-quadruplex structures are DNA secondary structures located in key zones of human genome; targeting quadruplex structures could allow obtaining an anticancer therapy more free from side effects. In the last years it has been proved that epigenetic modulation can control the expression of human genes, playing a crucial role in carcinogenesis and, in particular, an abnormal expression of histone deacetylase enzymes are related to tumor onset and progression. This thesis deals with the design and synthesis of new naphthalene diimide (NDI) derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development, such as HDACs. NDI-polyamine and NDI-polyamine-hydroxamic acid conjugates have been designed with the aim to provide potential MTDLs, in order to create molecules able simultaneously to interact with different targets involved in this pathology, specifically the G-quadruplex structures and HDAC, and to exploit the polyamine transport system to get selectively into cancer cells. Macrocyclic NDIs have been designed with the aim to improve the quadruplex targeting profile of the disubstituted NDIs. These compounds proved the ability to induce a high and selective stabilization of the quadruplex structures, together with cytotoxic activities in the micromolar range. Finally, trisubstituted NDIs have been developed as G-quadruplex-binders, potentially effective against pancreatic adenocarcinoma. In conclusion, all these studies may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.
Resumo:
In this thesis is described the design and synthesis of potential agents for the treatment of the multifactorial Alzheimer’s disease (AD). Our multi-target approach was to consider cannabinoid system involved in AD, together with classic targets. In the first project, designed modifications were performed on lead molecule in order to increase potency and obtain balanced activities on fatty acid amide hydrolase and cholinesterases. A small library of compounds was synthesized and biological results showed increased inhibitory activity (nanomolar range) related to selected target. The second project was focused on the benzofuran framework, a privileged structure being a common moiety found in many biologically active natural products and therapeutics. Hybrid molecules were designed and synthesized, focusing on the inhibition of cholinesterases, Aβ aggregation, FAAH and on the interaction with CB receptors. Preliminary results showed that several compounds are potent CB ligands, in particular the high affinity for CB2 receptors, could open new opportunities to modulate neuroinflammation. The third and the fourth project were carried out at the IMS, Aberdeen, under the supervision of Prof. Matteo Zanda. The role of the cannabinoid system in the brain is still largely unexplored and the relationship between the CB1 receptors functional modification, density and distribution and the onset of a pathological state is not well understood. For this reasons, Rimonabant analogues suitable as radioligands were synthesized. The latter, through PET, could provide reliable measurements of density and distribution of CB1 receptors in the brain. In the fifth project, in collaboration with CHyM of York, the goal was to develop arginine analogues that are target specific due to their exclusively location into NOS enzymes and could work as MRI contrasting agents. Synthesized analogues could be suitable substrate for the transfer of polarization by p-H2 molecules through SABRE technique transforming MRI a more sensitive and faster technique.