2 resultados para asynchronous replication
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of this thesis is to go through different approaches for proving expressiveness properties in several concurrent languages. We analyse four different calculi exploiting for each one a different technique.
We begin with the analysis of a synchronous language, we explore the expressiveness of a fragment of CCS! (a variant of Milner's CCS where replication is considered instead of recursion) w.r.t. the existence of faithful encodings (i.e. encodings that respect the behaviour of the encoded model without introducing unnecessary computations) of models of computability strictly less expressive than Turing Machines. Namely, grammars of types 1,2 and 3 in the Chomsky Hierarchy.
We then move to asynchronous languages and we study full abstraction for two Linda-like languages. Linda can be considered as the asynchronous version of CCS plus a shared memory (a multiset of elements) that is used for storing messages. After having defined a denotational semantics based on traces, we obtain fully abstract semantics for both languages by using suitable abstractions in order to identify different traces which do not correspond to different behaviours.
Since the ability of one of the two variants considered of recognising multiple occurrences of messages in the store (which accounts for an increase of expressiveness) reflects in a less complex abstraction, we then study other languages where multiplicity plays a fundamental role. We consider the language CHR (Constraint Handling Rules) a language which uses multi-headed (guarded) rules. We prove that multiple heads augment the expressive power of the language. Indeed we show that if we restrict to rules where the head contains at most n atoms we could generate a hierarchy of languages with increasing expressiveness (i.e. the CHR language allowing at most n atoms in the heads is more expressive than the language allowing at most m atoms, with m
Resumo:
This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.