2 resultados para astrophysics jets
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The velocity and mixing field of two turbulent jets configurations have been experimentally characterized by means of cold- and hot-wire anemometry in order to investigate the effects of the initial conditions on the flow development. In particular, experiments have been focused on the effect of the separation wall between the two streams on the flow field. The results of the experiments have pointed out that the wake behind a thick wall separating wall has a strong influence on the flow field evolution. For instance, for nearly unitary velocity ratios, a clear vortex shedding from the wall is observable. This phenomenon enhances the mixing between the inner and outer shear layer. This enhancement in the fluctuating activity is a consequence of a local absolute instability of the flow which, for a small range of velocity ratios, behaves as an hydrodynamic oscillator with no sensibility to external perturbations. It has been suggested indeed that this absolute instability can be used as a passive method to control the flow evolution. Finally, acoustic excitation has been applied to the near field in order to verify whether or not the observed vortex shedding behind the separating wall is due to a global oscillating mode as predicted by the theory. A new scaling relationship has been also proposed to determine the preferred frequency for nearly unitary velocity ratios. The proposed law takes into account both the Reynolds number and the velocity ratio dependence of this frequency and, therefore, improves all the previously proposed relationships.
Resumo:
In recent years, polymerization processes assisted by atmospheric pressure plasma jets (APPJs) have received increasing attention in numerous industrially relevant sectors since they allow to coat complex 3D substrates without requiring expensive vacuum systems. Therefore, advancing the comprehension of these processes has become a high priority topic of research. This PhD dissertation is focused on the study and the implementation of control strategies for a polymerization process assisted by an atmospheric pressure single electrode plasma jet. In the first section, a study of the validity of the Yasuda parameter (W/FM) as controlling parameter in the polymerization process assisted by the plasma jet and an aerosolized fluorinated silane precursor is proposed. The surface characterization of coatings deposited under different W/FM values reveals the presence of two very well-known deposition domains, thus suggesting the validity of W/FM as controlling parameter. In addition, the key role of the Yasuda parameter in the process is further demonstrated since coatings deposited under the same W/FM exhibit similar properties, regardless of how W/FM is obtained. In the second section, the development of a methodology for measuring the energy of reactions in the polymerization process assisted by the plasma jet and vaporized hexamethyldisiloxane is presented. The values of energy per precursor molecule are calculated through the identification and resolution of a proper equivalent electrical circuit. To validate the methodology, these energy values are correlated to the bond energies in the precursor molecule and to the properties of deposited thin films. It is shown that the precursor fragmentation in the discharge and the coating characteristics can be successfully explained according to the obtained values of energy per molecule. Through a detailed discussion of the limits and the potentialities of both the control strategies, this dissertation provides useful insights into the control of polymerization processes assisted by APPJs.