2 resultados para associated graded Lie algebra
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Studying moduli spaces of semistable Higgs bundles (E, \phi) of rank n on a smooth curve C, a key role is played by the spectral curve X (Hitchin), because an important result by Beauville-Narasimhan-Ramanan allows us to study isomorphism classes of such Higgs bundles in terms of isomorphism classes of rank-1 torsion-free sheaves on X. This way, the generic fibre of the Hitchin map, which associates to any semistable Higgs bundle the coefficients of the characteristic polynomial of \phi, is isomorphic to the Jacobian of X. Focusing on rank-2 Higgs data, this construction was extended by Barik to the case in which the curve C is reducible, one-nodal, having two smooth components. Such curve is called of compact type because its Picard group is compact. In this work, we describe and clarify the main points of the construction by Barik and we give examples, especially concerning generic fibres of the Hitchin map. Referring to Hausel-Pauly, we consider the case of SL(2,C)-Higgs bundles on a smooth base curve, which are such that the generic fibre of the Hitchin map is a subvariety of the Jacobian of X, the Prym variety. We recall the description of special loci, called endoscopic loci, such that the associated Prym variety is not connected. Then, letting G be an affine reductive group having underlying Lie algebra so(4,C), we consider G-Higgs bundles on a smooth base curve. Starting from the construction by Bradlow-Schaposnik, we discuss the associated endoscopic loci. By adapting these studies to a one-nodal base curve of compact type, we describe the fibre of the SL(2,C)-Hitchin map and of the G-Hitchin map, together with endoscopic loci. In the Appendix, we give an interpretation of generic spectral curves in terms of families of double covers.
Resumo:
In this thesis we explore the combinatorial properties of several polynomials arising in matroid theory. Our main motivation comes from the problem of computing them in an efficient way and from a collection of conjectures, mainly the real-rootedness and the monotonicity of their coefficients with respect to weak maps. Most of these polynomials can be interpreted as Hilbert--Poincaré series of graded vector spaces associated to a matroid and thus some combinatorial properties can be inferred via combinatorial algebraic geometry (non-negativity, palindromicity, unimodality); one of our goals is also to provide purely combinatorial interpretations of these properties, for example by redefining these polynomials as poset invariants (via the incidence algebra of the lattice of flats); moreover, by exploiting the bases polytopes and the valuativity of these invariants with respect to matroid decompositions, we are able to produce efficient closed formulas for every paving matroid, a class that is conjectured to be predominant among all matroids. One last goal is to extend part of our results to a higher categorical level, by proving analogous results on the original graded vector spaces via abelian categorification or on equivariant versions of these polynomials.