3 resultados para alcohol and smoking

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drug addiction manifests clinically as compulsive drug seeking, and cravings that can persist and recur even after extended periods of abstinence. The fundamental principle that unites addictive drugs is that each one enhances synaptic DA by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. Our attention has focused on the study of phenomena associated with the consumption of alcohol and heroin. Alcohol has long been considered an unspecific pharmacological agent, recent molecular pharmacology studies have shown that acts on different primary targets. Through gene expression studies conducted recently it has been shown that the classical opioid receptors are differently involved in the consumption of ethanol and, furthermore, the system nociceptin / NOP, included in the family of endogenous opioid system, and both appear able to play a key role in the initiation of alcohol use in rodents. What emerges is that manipulation of the opioid system, nociceptin, may be useful in the treatment of addictions and there are several evidences that support the use of this strategy. The linkage between gene expression alterations and epigenetic modulation in PDYN and PNOC promoters following alcohol treatment confirm the possible chromatin remodeling mechanism already proposed for alcoholism. In the second part of present study, we also investigated alterations in signaling molecules directly associated with MAPK pathway in a unique collection of postmortem brains from heroin abusers. The interest was focused on understanding the effects that prolonged exposure of heroin can cause in an individual, over the entire MAPK cascade and consequently on the transcription factor ELK1, which is regulated by this pathway. We have shown that the activation of ERK1/2 resulting in Elk-1 phosphorylation in striatal neurons supporting the hypothesis that prolonged exposure to substance abuse causes a dysregulation of MAPK pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Maleic anhydride is an important chemical intermediate mainly produced by the selective oxidation of n-butane, an industrial process catalyzed by vanadyl pyrophosphate-based materials, (VO)2P2O7. The first topic was investigated in collaboration with a company specialized in the production of organic anhydrides (Polynt SpA), with the aim of improving the performance of the process for the selective oxidation of n-butane to maleic anhydride, comparing the behavior of an industrial vanadyl pyrophosphate catalysts when utilized either in the industrial plant or in lab-scale reactor. The study was focused on how the catalyst characteristics and reactivity are affected by the reaction conditions and how the addition of a dopant can enhance the catalytic performance. Moreover, the ageing of the catalyst was studied, in order to correlate the deactivation process with the modifications occurring in the catalyst. The second topic was produced within the Seventh Framework (FP7) European Project “EuroBioRef”. The study was focused on a new route for the synthesis of maleic anhydride starting from an alternative reactant produced by fermentation of biomass:“bio-1-butanol”. In this field, the different possible catalytic configurations were investigated: the process was divided into two main reactions, the dehydration of 1-butanol to butenes and the selective oxidation of butenes to maleic anhydride. The features needed to catalyze the two steps were analyzed and different materials were proposed as catalysts, namely Keggin-type polyoxometalates, VOPO4∙2H2O and (VO)2P2O7. The reactivity of 1-butanol was tested under different conditions, in order to optimize the performance and understand the nature of the interaction between the alcohol and the catalyst surface. Then, the key intermediates in the mechanism of 1-butanol oxidehydration to MA were studied, with the aim of understanding the possible reaction mechanism. Lastly, the reactivity of the chemically sourced 1-butanol was compared with that one of different types of bio-butanols produced by biomass fermentation.