2 resultados para airborne sensing
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Remote sensing (RS) techniques have evolved into an important instrument to investigate forest function. New methods based on the remote detection of leaf biochemistry and photosynthesis are being developed and applied in pilot studies from airborne and satellite platforms (PRI, solar-induced fluorescence; N and chlorophyll content). Non-destructive monitoring methods, a direct application of RS studies, are also proving increasingly attractive for the determination of stress conditions or nutrient deficiencies not only in research but also in agronomy, horticulture and urban forestry (proximal RS). In this work I will focus on some novel techniques recently developed for the estimation of photochemistry and photosynthetic rates based (i) on the proximal measurement of steady-state chlorophyll fluorescence yield, or (ii) the remote sensing of changes in hyperspectral leaf reflectance, associated to xanthophyll de-epoxydation and energy partitioning, which is closely coupled to leaf photochemistry and photosynthesis. I will also present and describe a mathematical model of leaf steady-state fluorescence and photosynthesis recently developed in our group. Two different species were used in the experiments: Arbutus unedo, a schlerophyllous Mediterranean species, and Populus euroamericana, a broad leaf deciduous tree widely used in plantation forestry. Results show that ambient fluorescence could provide a useful tool for testing photosynthetic processes from a distance. These results confirm also the photosynthetic reflectance index (PRI) as an efficient remote sensing reflectance index estimating short-term changes in photochemical efficiency as well as long-term changes in leaf biochemistry. The study also demonstrated that RS techniques could provide a fast and reliable method to estimate photosynthetic pigment content and total nitrogen, beside assessing the state of photochemical process in our plants’ leaves in the field. This could have important practical applications for the management of plant cultivation systems, for the estimation of the nutrient requirements of our plants for optimal growth.
Resumo:
During my Doctoral study I researched about the remote detection of canopy N concentration in forest stands, its potentials and problems, under many overlapping perspectives. The study consisted of three parts. In S. Rossore 2000 dataset analysis, I tested regressions between N concentration and NIR reflectances derived from different sources (field samples, airborne and satellite sensors). The analysis was further expanded using a larger dataset acquired in year 2009 as part of a new campaign funded by the ESA. In both cases, a good correlation was observed between Landsat NIR, using both TM (2009) and ETM+ (2000) imagery, and N concentration measured by a CHN elemental analyzer. Concerning airborne sensors I did not obtain the same good results, mainly because of the large FOV of the two instruments, and to the anisotropy of vegetation reflectance. We also tested the relation between ground based ASD measures and nitrogen concentration, obtaining really good results. Thus, I decided to expand my study to the regional level, focusing only on field and satellite measures. I analyzed a large dataset for the whole of Catalonia, Spain; MODIS imagery was used, in consideration of its spectral characteristics and despite its rather poor spatial resolution. Also in this case a regression between nitrogen concentration and reflectances was found, but not so good as in previous experiences. Moreover, vegetation type was found to play an important role in the observed relationship. We concluded that MODIS is not the most suitable satellite sensor in realities like Italy and Catalonia, which present a patchy and inhomogeneous vegetation cover; so it could be utilized for the parameterization of eco-physiological and biogeochemical models, but not for really local nitrogen estimate. Thus multispectral sensors similar to Landsat Thematic Mapper, with better spatial resolution, could be the most appropriate sensors to estimate N concentration.