3 resultados para advanced metering infrastructure (AMI)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Agent Communication Languages (ACLs) have been developed to provide a way for agents to communicate with each other supporting cooperation in Multi-Agent Systems. In the past few years many ACLs have been proposed for Multi-Agent Systems, such as KQML and FIPA-ACL. The goal of these languages is to support high-level, human like communication among agents, exploiting Knowledge Level features rather than symbol level ones. Adopting these ACLs, and mainly the FIPA-ACL specifications, many agent platforms and prototypes have been developed. Despite these efforts, an important issue in the research on ACLs is still open and concerns how these languages should deal (at the Knowledge Level) with possible failures of agents. Indeed, the notion of Knowledge Level cannot be straightforwardly extended to a distributed framework such as MASs, because problems concerning communication and concurrency may arise when several Knowledge Level agents interact (for example deadlock or starvation). The main contribution of this Thesis is the design and the implementation of NOWHERE, a platform to support Knowledge Level Agents on the Web. NOWHERE exploits an advanced Agent Communication Language, FT-ACL, which provides high-level fault-tolerant communication primitives and satisfies a set of well defined Knowledge Level programming requirements. NOWHERE is well integrated with current technologies, for example providing full integration for Web services. Supporting different middleware used to send messages, it can be adapted to various scenarios. In this Thesis we present the design and the implementation of the architecture, together with a discussion of the most interesting details and a comparison with other emerging agent platforms. We also present several case studies where we discuss the benefits of programming agents using the NOWHERE architecture, comparing the results with other solutions. Finally, the complete source code of the basic examples can be found in appendix.
Resumo:
Nowadays, computing is migrating from traditional high performance and distributed computing to pervasive and utility computing based on heterogeneous networks and clients. The current trend suggests that future IT services will rely on distributed resources and on fast communication of heterogeneous contents. The success of this new range of services is directly linked to the effectiveness of the infrastructure in delivering them. The communication infrastructure will be the aggregation of different technologies even though the current trend suggests the emergence of single IP based transport service. Optical networking is a key technology to answer the increasing requests for dynamic bandwidth allocation and configure multiple topologies over the same physical layer infrastructure, optical networks today are still “far” from accessible from directly configure and offer network services and need to be enriched with more “user oriented” functionalities. However, current Control Plane architectures only facilitate efficient end-to-end connectivity provisioning and certainly cannot meet future network service requirements, e.g. the coordinated control of resources. The overall objective of this work is to provide the network with the improved usability and accessibility of the services provided by the Optical Network. More precisely, the definition of a service-oriented architecture is the enable technology to allow user applications to gain benefit of advanced services over an underlying dynamic optical layer. The definition of a service oriented networking architecture based on advanced optical network technologies facilitates users and applications access to abstracted levels of information regarding offered advanced network services. This thesis faces the problem to define a Service Oriented Architecture and its relevant building blocks, protocols and languages. In particular, this work has been focused on the use of the SIP protocol as a inter-layers signalling protocol which defines the Session Plane in conjunction with the Network Resource Description language. On the other hand, an advantage optical network must accommodate high data bandwidth with different granularities. Currently, two main technologies are emerging promoting the development of the future optical transport network, Optical Burst and Packet Switching. Both technologies respectively promise to provide all optical burst or packet switching instead of the current circuit switching. However, the electronic domain is still present in the scheduler forwarding and routing decision. Because of the high optics transmission frequency the burst or packet scheduler faces a difficult challenge, consequentially, high performance and time focused design of both memory and forwarding logic is need. This open issue has been faced in this thesis proposing an high efficiently implementation of burst and packet scheduler. The main novelty of the proposed implementation is that the scheduling problem has turned into simple calculation of a min/max function and the function complexity is almost independent of on the traffic conditions.
Resumo:
A first phase of the research activity has been related to the study of the state of art of the infrastructures for cycling, bicycle use and methods for evaluation. In this part, the candidate has studied the "bicycle system" in countries with high bicycle use and in particular in the Netherlands. Has been carried out an evaluation of the questionnaires of the survey conducted within the European project BICY on mobility in general in 13 cities of the participating countries. The questionnaire was designed, tested and implemented, and was later validated by a test in Bologna. The results were corrected with information on demographic situation and compared with official data. The cycling infrastructure analysis was conducted on the basis of information from the OpenStreetMap database. The activity consisted in programming algorithms in Python that allow to extract data from the database infrastructure for a region, to sort and filter cycling infrastructure calculating some attributes, such as the length of the arcs paths. The results obtained were compared with official data where available. The structure of the thesis is as follows: 1. Introduction: description of the state of cycling in several advanced countries, description of methods of analysis and their importance to implement appropriate policies for cycling. Supply and demand of bicycle infrastructures. 2. Survey on mobility: it gives details of the investigation developed and the method of evaluation. The results obtained are presented and compared with official data. 3. Analysis cycling infrastructure based on information from the database of OpenStreetMap: describes the methods and algorithms developed during the PhD. The results obtained by the algorithms are compared with official data. 4. Discussion: The above results are discussed and compared. In particular the cycle demand is compared with the length of cycle networks within a city. 5. Conclusions