17 resultados para ad-hoc networks distributed algorithms atomic distributed shared memory
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The increasing diffusion of wireless-enabled portable devices is pushing toward the design of novel service scenarios, promoting temporary and opportunistic interactions in infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general model of these higly dynamic networks that can be specialized, depending on application cases, in more specific and refined models such as Vehicular Ad Hoc Networks and Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance: resource diffusion among users equipped with portable devices, such as laptops, smart phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity of these scenarios calls for novel distributed protocols and services facilitating application development. To this aim we have designed middleware solutions supporting these challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software resources in dense MANET; it implements novel lightweight protocols to maintain a desired replication degree despite participants mobility, and efficiently perform resource retrieval. REDMAN exploits the high-density assumption to achieve scalability and limited network overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise similar issues: we propose a specific middleware support, called MobEyes, exploiting node mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes creates a low-cost opportunistic distributed index to query the distributed storage and to determine the location of needed information. Extensive validation and testing of REDMAN and MobEyes prove the effectiveness of our original solutions in limiting communication overhead while maintaining the required accuracy of replication degree and indexing completeness, and demonstrates the feasibility of the middleware approach.
Resumo:
Unlike traditional wireless networks, characterized by the presence of last-mile, static and reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by collections of mobile and static terminals that exchange data by enabling each other's communication. Supporting multi-hop communication in a MANET is a challenging research area because it requires cooperation between different protocol layers (MAC, routing, transport). In particular, MAC and routing protocols could be considered mutually cooperative protocol layers. When a route is established, the exposed and hidden terminal problems at MAC layer may decrease the end-to-end performance proportionally with the length of each route. Conversely, the contention at MAC layer may cause a routing protocol to respond by initiating new routes queries and routing table updates. Multi-hop communication may also benefit the presence of pseudo-centralized virtual infrastructures obtained by grouping nodes into clusters. Clustering structures may facilitate the spatial reuse of resources by increasing the system capacity: at the same time, the clustering hierarchy may be used to coordinate transmissions events inside the network and to support intra-cluster routing schemes. Again, MAC and clustering protocols could be considered mutually cooperative protocol layers: the clustering scheme could support MAC layer coordination among nodes, by shifting the distributed MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the system benefits of the clustering scheme could be emphasized by the pseudo-centralized MAC layer with the support for differentiated access priorities and controlled contention. In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering and routing protocols in MANETs. As main contribution, we study and analyze the integration of MAC and clustering schemes to support multi-hop communication in large-scale ad hoc networks. A novel clustering protocol, named Availability Clustering (AC), is defined under general nodes' heterogeneity assumptions in terms of connectivity, available energy and relative mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol, named Differentiated Distributed Coordination Function (DDCF), whose focus is to implement adaptive access differentiation based on the node roles, which have been assigned by the upper-layer's clustering scheme. We extensively simulate the proposed clustering scheme by showing its effectiveness in dominating the network dynamics, under some stressing mobility models and different mobility rates. Based on these results, we propose a possible application of the cross-layer MAC+Clustering scheme to support the fast propagation of alert messages in a vehicular environment. At the same time, we investigate the integration of MAC and routing protocols in large scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by extending the AOMDV protocol with a novel load-balancing approach to concurrently distribute the traffic among the multiple paths. We also study the composition effect of a IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF), used to reduce the effects of self-contention among frames at the MAC layer. The protocol framework is modelled and extensively simulated for a large set of metrics and scenarios. For both the schemes, the simulation results reveal the benefits of the cross-layer MAC+routing and MAC+clustering approaches over single-layer solutions.
Resumo:
Large scale wireless adhoc networks of computers, sensors, PDAs etc. (i.e. nodes) are revolutionizing connectivity and leading to a paradigm shift from centralized systems to highly distributed and dynamic environments. An example of adhoc networks are sensor networks, which are usually composed by small units able to sense and transmit to a sink elementary data which are successively processed by an external machine. Recent improvements in the memory and computational power of sensors, together with the reduction of energy consumptions, are rapidly changing the potential of such systems, moving the attention towards datacentric sensor networks. A plethora of routing and data management algorithms have been proposed for the network path discovery ranging from broadcasting/floodingbased approaches to those using global positioning systems (GPS). We studied WGrid, a novel decentralized infrastructure that organizes wireless devices in an adhoc manner, where each node has one or more virtual coordinates through which both message routing and data management occur without reliance on either flooding/broadcasting operations or GPS. The resulting adhoc network does not suffer from the deadend problem, which happens in geographicbased routing when a node is unable to locate a neighbor closer to the destination than itself. WGrid allow multidimensional data management capability since nodes' virtual coordinates can act as a distributed database without needing neither special implementation or reorganization. Any kind of data (both single and multidimensional) can be distributed, stored and managed. We will show how a location service can be easily implemented so that any search is reduced to a simple query, like for any other data type. WGrid has then been extended by adopting a replication methodology. We called the resulting algorithm WRGrid. Just like WGrid, WRGrid acts as a distributed database without needing neither special implementation nor reorganization and any kind of data can be distributed, stored and managed. We have evaluated the benefits of replication on data management, finding out, from experimental results, that it can halve the average number of hops in the network. The direct consequence of this fact are a significant improvement on energy consumption and a workload balancing among sensors (number of messages routed by each node). Finally, thanks to the replications, whose number can be arbitrarily chosen, the resulting sensor network can face sensors disconnections/connections, due to failures of sensors, without data loss. Another extension to {WGrid} is {W*Grid} which extends it by strongly improving network recovery performance from link and/or device failures that may happen due to crashes or battery exhaustion of devices or to temporary obstacles. W*Grid guarantees, by construction, at least two disjoint paths between each couple of nodes. This implies that the recovery in W*Grid occurs without broadcasting transmissions and guaranteeing robustness while drastically reducing the energy consumption. An extensive number of simulations shows the efficiency, robustness and traffic road of resulting networks under several scenarios of device density and of number of coordinates. Performance analysis have been compared to existent algorithms in order to validate the results.
Resumo:
Modern embedded systems embrace many-core shared-memory designs. Due to constrained power and area budgets, most of them feature software-managed scratchpad memories instead of data caches to increase the data locality. It is therefore programmers’ responsibility to explicitly manage the memory transfers, and this make programming these platform cumbersome. Moreover, complex modern applications must be adequately parallelized before they can the parallel potential of the platform into actual performance. To support this, programming languages were proposed, which work at a high level of abstraction, and rely on a runtime whose cost hinders performance, especially in embedded systems, where resources and power budget are constrained. This dissertation explores the applicability of the shared-memory paradigm on modern many-core systems, focusing on the ease-of-programming. It focuses on OpenMP, the de-facto standard for shared memory programming. In a first part, the cost of algorithms for synchronization and data partitioning are analyzed, and they are adapted to modern embedded many-cores. Then, the original design of an OpenMP runtime library is presented, which supports complex forms of parallelism such as multi-level and irregular parallelism. In the second part of the thesis, the focus is on heterogeneous systems, where hardware accelerators are coupled to (many-)cores to implement key functional kernels with orders-of-magnitude of speedup and energy efficiency compared to the “pure software” version. However, three main issues rise, namely i) platform design complexity, ii) architectural scalability and iii) programmability. To tackle them, a template for a generic hardware processing unit (HWPU) is proposed, which share the memory banks with cores, and the template for a scalable architecture is shown, which integrates them through the shared-memory system. Then, a full software stack and toolchain are developed to support platform design and to let programmers exploiting the accelerators of the platform. The OpenMP frontend is extended to interact with it.
Resumo:
Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
This thesis investigates context-aware wireless networks, capable to adapt their behavior to the context and the application, thanks to the ability of combining communication, sensing and localization. Problems of signals demodulation, parameters estimation and localization are addressed exploiting analytical methods, simulations and experimentation, for the derivation of the fundamental limits, the performance characterization of the proposed schemes and the experimental validation. Ultrawide-bandwidth (UWB) signals are in certain cases considered and non-coherent receivers, allowing the exploitation of the multipath channel diversity without adopting complex architectures, investigated. Closed-form expressions for the achievable bit error probability of novel proposed architectures are derived. The problem of time delay estimation (TDE), enabling network localization thanks to ranging measurement, is addressed from a theoretical point of view. New fundamental bounds on TDE are derived in the case the received signal is partially known or unknown at receiver side, as often occurs due to propagation or due to the adoption of low-complexity estimators. Practical estimators, such as energy-based estimators, are revised and their performance compared with the new bounds. The localization issue is addressed with experimentation for the characterization of cooperative networks. Practical algorithms able to improve the accuracy in non-line-of-sight (NLOS) channel conditions are evaluated on measured data. With the purpose of enhancing the localization coverage in NLOS conditions, non-regenerative relaying techniques for localization are introduced and ad hoc position estimators are devised. An example of context-aware network is given with the study of the UWB-RFID system for detecting and locating semi-passive tags. In particular a deep investigation involving low-complexity receivers capable to deal with problems of multi-tag interference, synchronization mismatches and clock drift is presented. Finally, theoretical bounds on the localization accuracy of this and others passive localization networks (e.g., radar) are derived, also accounting for different configurations such as in monostatic and multistatic networks.
Resumo:
This work is structured as follows: In Section 1 we discuss the clinical problem of heart failure. In particular, we present the phenomenon known as ventricular mechanical dyssynchrony: its impact on cardiac function, the therapy for its treatment and the methods for its quantification. Specifically, we describe the conductance catheter and its use for the measurement of dyssynchrony. At the end of the Section 1, we propose a new set of indexes to quantify the dyssynchrony that are studied and validated thereafter. In Section 2 we describe the studies carried out in this work: we report the experimental protocols, we present and discuss the results obtained. Finally, we report the overall conclusions drawn from this work and we try to envisage future works and possible clinical applications of our results. Ancillary studies that were carried out during this work mainly to investigate several aspects of cardiac resynchronization therapy (CRT) are mentioned in Appendix. -------- Ventricular mechanical dyssynchrony plays a regulating role already in normal physiology but is especially important in pathological conditions, such as hypertrophy, ischemia, infarction, or heart failure (Chapter 1,2.). Several prospective randomized controlled trials supported the clinical efficacy and safety of cardiac resynchronization therapy (CRT) in patients with moderate or severe heart failure and ventricular dyssynchrony. CRT resynchronizes ventricular contraction by simultaneous pacing of both left and right ventricle (biventricular pacing) (Chapter 1.). Currently, the conductance catheter method has been used extensively to assess global systolic and diastolic ventricular function and, more recently, the ability of this instrument to pick-up multiple segmental volume signals has been used to quantify mechanical ventricular dyssynchrony. Specifically, novel indexes based on volume signals acquired with the conductance catheter were introduced to quantify dyssynchrony (Chapter 3,4.). Present work was aimed to describe the characteristics of the conductancevolume signals, to investigate the performance of the indexes of ventricular dyssynchrony described in literature and to introduce and validate improved dyssynchrony indexes. Morevoer, using the conductance catheter method and the new indexes, the clinical problem of the ventricular pacing site optimization was addressed and the measurement protocol to adopt for hemodynamic tests on cardiac pacing was investigated. In accordance to the aims of the work, in addition to the classical time-domain parameters, a new set of indexes has been extracted, based on coherent averaging procedure and on spectral and cross-spectral analysis (Chapter 4.). Our analyses were carried out on patients with indications for electrophysiologic study or device implantation (Chapter 5.). For the first time, besides patients with heart failure, indexes of mechanical dyssynchrony based on conductance catheter were extracted and studied in a population of patients with preserved ventricular function, providing information on the normal range of such a kind of values. By performing a frequency domain analysis and by applying an optimized coherent averaging procedure (Chapter 6.a.), we were able to describe some characteristics of the conductance-volume signals (Chapter 6.b.). We unmasked the presence of considerable beat-to-beat variations in dyssynchrony that seemed more frequent in patients with ventricular dysfunction and to play a role in discriminating patients. These non-recurrent mechanical ventricular non-uniformities are probably the expression of the substantial beat-to-beat hemodynamic variations, often associated with heart failure and due to cardiopulmonary interaction and conduction disturbances. We investigated how the coherent averaging procedure may affect or refine the conductance based indexes; in addition, we proposed and tested a new set of indexes which quantify the non-periodic components of the volume signals. Using the new set of indexes we studied the acute effects of the CRT and the right ventricular pacing, in patients with heart failure and patients with preserved ventricular function. In the overall population we observed a correlation between the hemodynamic changes induced by the pacing and the indexes of dyssynchrony, and this may have practical implications for hemodynamic-guided device implantation. The optimal ventricular pacing site for patients with conventional indications for pacing remains controversial. The majority of them do not meet current clinical indications for CRT pacing. Thus, we carried out an analysis to compare the impact of several ventricular pacing sites on global and regional ventricular function and dyssynchrony (Chapter 6.c.). We observed that right ventricular pacing worsens cardiac function in patients with and without ventricular dysfunction unless the pacing site is optimized. CRT preserves left ventricular function in patients with normal ejection fraction and improves function in patients with poor ejection fraction despite no clinical indication for CRT. Moreover, the analysis of the results obtained using new indexes of regional dyssynchrony, suggests that pacing site may influence overall global ventricular function depending on its relative effects on regional function and synchrony. Another clinical problem that has been investigated in this work is the optimal right ventricular lead location for CRT (Chapter 6.d.). Similarly to the previous analysis, using novel parameters describing local synchrony and efficiency, we tested the hypothesis and we demonstrated that biventricular pacing with alternative right ventricular pacing sites produces acute improvement of ventricular systolic function and improves mechanical synchrony when compared to standard right ventricular pacing. Although no specific right ventricular location was shown to be superior during CRT, the right ventricular pacing site that produced the optimal acute hemodynamic response varied between patients. Acute hemodynamic effects of cardiac pacing are conventionally evaluated after stabilization episodes. The applied duration of stabilization periods in most cardiac pacing studies varied considerably. With an ad hoc protocol (Chapter 6.e.) and indexes of mechanical dyssynchrony derived by conductance catheter we demonstrated that the usage of stabilization periods during evaluation of cardiac pacing may mask early changes in systolic and diastolic intra-ventricular dyssynchrony. In fact, at the onset of ventricular pacing, the main dyssynchrony and ventricular performance changes occur within a 10s time span, initiated by the changes in ventricular mechanical dyssynchrony induced by aberrant conduction and followed by a partial or even complete recovery. It was already demonstrated in normal animals that ventricular mechanical dyssynchrony may act as a physiologic modulator of cardiac performance together with heart rate, contractile state, preload and afterload. The present observation, which shows the compensatory mechanism of mechanical dyssynchrony, suggests that ventricular dyssynchrony may be regarded as an intrinsic cardiac property, with baseline dyssynchrony at increased level in heart failure patients. To make available an independent system for cardiac output estimation, in order to confirm the results obtained with conductance volume method, we developed and validated a novel technique to apply the Modelflow method (a method that derives an aortic flow waveform from arterial pressure by simulation of a non-linear three-element aortic input impedance model, Wesseling et al. 1993) to the left ventricular pressure signal, instead of the arterial pressure used in the classical approach (Chapter 7.). The results confirmed that in patients without valve abnormalities, undergoing conductance catheter evaluations, the continuous monitoring of cardiac output using the intra-ventricular pressure signal is reliable. Thus, cardiac output can be monitored quantitatively and continuously with a simple and low-cost method. During this work, additional studies were carried out to investigate several areas of uncertainty of CRT. The results of these studies are briefly presented in Appendix: the long-term survival in patients treated with CRT in clinical practice, the effects of CRT in patients with mild symptoms of heart failure and in very old patients, the limited thoracotomy as a second choice alternative to transvenous implant for CRT delivery, the evolution and prognostic significance of diastolic filling pattern in CRT, the selection of candidates to CRT with echocardiographic criteria and the prediction of response to the therapy.
Resumo:
The integration of distributed and ubiquitous intelligence has emerged over the last years as the mainspring of transformative advancements in mobile radio networks. As we approach the era of “mobile for intelligence”, next-generation wireless networks are poised to undergo significant and profound changes. Notably, the overarching challenge that lies ahead is the development and implementation of integrated communication and learning mechanisms that will enable the realization of autonomous mobile radio networks. The ultimate pursuit of eliminating human-in-the-loop constitutes an ambitious challenge, necessitating a meticulous delineation of the fundamental characteristics that artificial intelligence (AI) should possess to effectively achieve this objective. This challenge represents a paradigm shift in the design, deployment, and operation of wireless networks, where conventional, static configurations give way to dynamic, adaptive, and AI-native systems capable of self-optimization, self-sustainment, and learning. This thesis aims to provide a comprehensive exploration of the fundamental principles and practical approaches required to create autonomous mobile radio networks that seamlessly integrate communication and learning components. The first chapter of this thesis introduces the notion of Predictive Quality of Service (PQoS) and adaptive optimization and expands upon the challenge to achieve adaptable, reliable, and robust network performance in dynamic and ever-changing environments. The subsequent chapter delves into the revolutionary role of generative AI in shaping next-generation autonomous networks. This chapter emphasizes achieving trustworthy uncertainty-aware generation processes with the use of approximate Bayesian methods and aims to show how generative AI can improve generalization while reducing data communication costs. Finally, the thesis embarks on the topic of distributed learning over wireless networks. Distributed learning and its declinations, including multi-agent reinforcement learning systems and federated learning, have the potential to meet the scalability demands of modern data-driven applications, enabling efficient and collaborative model training across dynamic scenarios while ensuring data privacy and reducing communication overhead.
Resumo:
Today, third generation networks are consolidated realities, and user expectations on new applications and services are becoming higher and higher. Therefore, new systems and technologies are necessary to move towards the market needs and the user requirements. This has driven the development of fourth generation networks. ”Wireless network for the fourth generation” is the expression used to describe the next step in wireless communications. There is no formal definition for what these fourth generation networks are; however, we can say that the next generation networks will be based on the coexistence of heterogeneous networks, on the integration with the existing radio access network (e.g. GPRS, UMTS, WIFI, ...) and, in particular, on new emerging architectures that are obtaining more and more relevance, as Wireless Ad Hoc and Sensor Networks (WASN). Thanks to their characteristics, fourth generation wireless systems will be able to offer custom-made solutions and applications personalized according to the user requirements; they will offer all types of services at an affordable cost, and solutions characterized by flexibility, scalability and reconfigurability. This PhD’s work has been focused on WASNs, autoconfiguring networks which are not based on a fixed infrastructure, but are characterized by being infrastructure less, where devices have to automatically generate the network in the initial phase, and maintain it through reconfiguration procedures (if nodes’ mobility, or energy drain, etc..., cause disconnections). The main part of the PhD activity has been focused on an analytical study on connectivity models for wireless ad hoc and sensor networks, nevertheless a small part of my work was experimental. Anyway, both the theoretical and experimental activities have had a common aim, related to the performance evaluation of WASNs. Concerning the theoretical analysis, the objective of the connectivity studies has been the evaluation of models for the interference estimation. This is due to the fact that interference is the most important performance degradation cause in WASNs. As a consequence, is very important to find an accurate model that allows its investigation, and I’ve tried to obtain a model the most realistic and general as possible, in particular for the evaluation of the interference coming from bounded interfering areas (i.e. a WiFi hot spot, a wireless covered research laboratory, ...). On the other hand, the experimental activity has led to Throughput and Packet Error Rare measurements on a real IEEE802.15.4 Wireless Sensor Network.
Resumo:
The scale down of transistor technology allows microelectronics manufacturers such as Intel and IBM to build always more sophisticated systems on a single microchip. The classical interconnection solutions based on shared buses or direct connections between the modules of the chip are becoming obsolete as they struggle to sustain the increasing tight bandwidth and latency constraints that these systems demand. The most promising solution for the future chip interconnects are the Networks on Chip (NoC). NoCs are network composed by routers and channels used to inter- connect the different components installed on the single microchip. Examples of advanced processors based on NoC interconnects are the IBM Cell processor, composed by eight CPUs that is installed on the Sony Playstation III and the Intel Teraflops pro ject composed by 80 independent (simple) microprocessors. On chip integration is becoming popular not only in the Chip Multi Processor (CMP) research area but also in the wider and more heterogeneous world of Systems on Chip (SoC). SoC comprehend all the electronic devices that surround us such as cell-phones, smart-phones, house embedded systems, automotive systems, set-top boxes etc... SoC manufacturers such as ST Microelectronics , Samsung, Philips and also Universities such as Bologna University, M.I.T., Berkeley and more are all proposing proprietary frameworks based on NoC interconnects. These frameworks help engineers in the switch of design methodology and speed up the development of new NoC-based systems on chip. In this Thesis we propose an introduction of CMP and SoC interconnection networks. Then focusing on SoC systems we propose: • a detailed analysis based on simulation of the Spidergon NoC, a ST Microelectronics solution for SoC interconnects. The Spidergon NoC differs from many classical solutions inherited from the parallel computing world. Here we propose a detailed analysis of this NoC topology and routing algorithms. Furthermore we propose aEqualized a new routing algorithm designed to optimize the use of the resources of the network while also increasing its performance; • a methodology flow based on modified publicly available tools that combined can be used to design, model and analyze any kind of System on Chip; • a detailed analysis of a ST Microelectronics-proprietary transport-level protocol that the author of this Thesis helped developing; • a simulation-based comprehensive comparison of different network interface designs proposed by the author and the researchers at AST lab, in order to integrate shared-memory and message-passing based components on a single System on Chip; • a powerful and flexible solution to address the time closure exception issue in the design of synchronous Networks on Chip. Our solution is based on relay stations repeaters and allows to reduce the power and area demands of NoC interconnects while also reducing its buffer needs; • a solution to simplify the design of the NoC by also increasing their performance and reducing their power and area consumption. We propose to replace complex and slow virtual channel-based routers with multiple and flexible small Multi Plane ones. This solution allows us to reduce the area and power dissipation of any NoC while also increasing its performance especially when the resources are reduced. This Thesis has been written in collaboration with the Advanced System Technology laboratory in Grenoble France, and the Computer Science Department at Columbia University in the city of New York.
Resumo:
The treatment of the Cerebral Palsy (CP) is considered as the “core problem” for the whole field of the pediatric rehabilitation. The reason why this pathology has such a primary role, can be ascribed to two main aspects. First of all CP is the form of disability most frequent in childhood (one new case per 500 birth alive, (1)), secondarily the functional recovery of the “spastic” child is, historically, the clinical field in which the majority of the therapeutic methods and techniques (physiotherapy, orthotic, pharmacologic, orthopedic-surgical, neurosurgical) were first applied and tested. The currently accepted definition of CP – Group of disorders of the development of movement and posture causing activity limitation (2) – is the result of a recent update by the World Health Organization to the language of the International Classification of Functioning Disability and Health, from the original proposal of Ingram – A persistent but not unchangeable disorder of posture and movement – dated 1955 (3). This definition considers CP as a permanent ailment, i.e. a “fixed” condition, that however can be modified both functionally and structurally by means of child spontaneous evolution and treatments carried out during childhood. The lesion that causes the palsy, happens in a structurally immature brain in the pre-, peri- or post-birth period (but only during the firsts months of life). The most frequent causes of CP are: prematurity, insufficient cerebral perfusion, arterial haemorrhage, venous infarction, hypoxia caused by various origin (for example from the ingestion of amniotic liquid), malnutrition, infection and maternal or fetal poisoning. In addition to these causes, traumas and malformations have to be included. The lesion, whether focused or spread over the nervous system, impairs the whole functioning of the Central Nervous System (CNS). As a consequence, they affect the construction of the adaptive functions (4), first of all posture control, locomotion and manipulation. The palsy itself does not vary over time, however it assumes an unavoidable “evolutionary” feature when during growth the child is requested to meet new and different needs through the construction of new and different functions. It is essential to consider that clinically CP is not only a direct expression of structural impairment, that is of etiology, pathogenesis and lesion timing, but it is mainly the manifestation of the path followed by the CNS to “re”-construct the adaptive functions “despite” the presence of the damage. “Palsy” is “the form of the function that is implemented by an individual whose CNS has been damaged in order to satisfy the demands coming from the environment” (4). Therefore it is only possible to establish general relations between lesion site, nature and size, and palsy and recovery processes. It is quite common to observe that children with very similar neuroimaging can have very different clinical manifestations of CP and, on the other hand, children with very similar motor behaviors can have completely different lesion histories. A very clear example of this is represented by hemiplegic forms, which show bilateral hemispheric lesions in a high percentage of cases. The first section of this thesis is aimed at guiding the interpretation of CP. First of all the issue of the detection of the palsy is treated from historical viewpoint. Consequently, an extended analysis of the current definition of CP, as internationally accepted, is provided. The definition is then outlined in terms of a space dimension and then of a time dimension, hence it is highlighted where this definition is unacceptably lacking. The last part of the first section further stresses the importance of shifting from the traditional concept of CP as a palsy of development (defect analysis) towards the notion of development of palsy, i.e., as the product of the relationship that the individual however tries to dynamically build with the surrounding environment (resource semeiotics) starting and growing from a different availability of resources, needs, dreams, rights and duties (4). In the scientific and clinic community no common classification system of CP has so far been universally accepted. Besides, no standard operative method or technique have been acknowledged to effectively assess the different disabilities and impairments exhibited by children with CP. CP is still “an artificial concept, comprising several causes and clinical syndromes that have been grouped together for a convenience of management” (5). The lack of standard and common protocols able to effectively diagnose the palsy, and as a consequence to establish specific treatments and prognosis, is mainly because of the difficulty to elevate this field to a level based on scientific evidence. A solution aimed at overcoming the current incomplete treatment of CP children is represented by the clinical systematic adoption of objective tools able to measure motor defects and movement impairments. A widespread application of reliable instruments and techniques able to objectively evaluate both the form of the palsy (diagnosis) and the efficacy of the treatments provided (prognosis), constitutes a valuable method able to validate care protocols, establish the efficacy of classification systems and assess the validity of definitions. Since the ‘80s, instruments specifically oriented to the analysis of the human movement have been advantageously designed and applied in the context of CP with the aim of measuring motor deficits and, especially, gait deviations. The gait analysis (GA) technique has been increasingly used over the years to assess, analyze, classify, and support the process of clinical decisions making, allowing for a complete investigation of gait with an increased temporal and spatial resolution. GA has provided a basis for improving the outcome of surgical and nonsurgical treatments and for introducing a new modus operandi in the identification of defects and functional adaptations to the musculoskeletal disorders. Historically, the first laboratories set up for gait analysis developed their own protocol (set of procedures for data collection and for data reduction) independently, according to performances of the technologies available at that time. In particular, the stereophotogrammetric systems mainly based on optoelectronic technology, soon became a gold-standard for motion analysis. They have been successfully applied especially for scientific purposes. Nowadays the optoelectronic systems have significantly improved their performances in term of spatial and temporal resolution, however many laboratories continue to use the protocols designed on the technology available in the ‘70s and now out-of-date. Furthermore, these protocols are not coherent both for the biomechanical models and for the adopted collection procedures. In spite of these differences, GA data are shared, exchanged and interpreted irrespectively to the adopted protocol without a full awareness to what extent these protocols are compatible and comparable with each other. Following the extraordinary advances in computer science and electronics, new systems for GA no longer based on optoelectronic technology, are now becoming available. They are the Inertial and Magnetic Measurement Systems (IMMSs), based on miniature MEMS (Microelectromechanical systems) inertial sensor technology. These systems are cost effective, wearable and fully portable motion analysis systems, these features gives IMMSs the potential to be used both outside specialized laboratories and to consecutive collect series of tens of gait cycles. The recognition and selection of the most representative gait cycle is then easier and more reliable especially in CP children, considering their relevant gait cycle variability. The second section of this thesis is focused on GA. In particular, it is firstly aimed at examining the differences among five most representative GA protocols in order to assess the state of the art with respect to the inter-protocol variability. The design of a new protocol is then proposed and presented with the aim of achieving gait analysis on CP children by means of IMMS. The protocol, named ‘Outwalk’, contains original and innovative solutions oriented at obtaining joint kinematic with calibration procedures extremely comfortable for the patients. The results of a first in-vivo validation of Outwalk on healthy subjects are then provided. In particular, this study was carried out by comparing Outwalk used in combination with an IMMS with respect to a reference protocol and an optoelectronic system. In order to set a more accurate and precise comparison of the systems and the protocols, ad hoc methods were designed and an original formulation of the statistical parameter coefficient of multiple correlation was developed and effectively applied. On the basis of the experimental design proposed for the validation on healthy subjects, a first assessment of Outwalk, together with an IMMS, was also carried out on CP children. The third section of this thesis is dedicated to the treatment of walking in CP children. Commonly prescribed treatments in addressing gait abnormalities in CP children include physical therapy, surgery (orthopedic and rhizotomy), and orthoses. The orthotic approach is conservative, being reversible, and widespread in many therapeutic regimes. Orthoses are used to improve the gait of children with CP, by preventing deformities, controlling joint position, and offering an effective lever for the ankle joint. Orthoses are prescribed for the additional aims of increasing walking speed, improving stability, preventing stumbling, and decreasing muscular fatigue. The ankle-foot orthosis (AFO), with a rigid ankle, are primarily designed to prevent equinus and other foot deformities with a positive effect also on more proximal joints. However, AFOs prevent the natural excursion of the tibio-tarsic joint during the second rocker, hence hampering the natural leaning progression of the whole body under the effect of the inertia (6). A new modular (submalleolar) astragalus-calcanear orthosis, named OMAC, has recently been proposed with the intention of substituting the prescription of AFOs in those CP children exhibiting a flat and valgus-pronated foot. The aim of this section is thus to present the mechanical and technical features of the OMAC by means of an accurate description of the device. In particular, the integral document of the deposited Italian patent, is provided. A preliminary validation of OMAC with respect to AFO is also reported as resulted from an experimental campaign on diplegic CP children, during a three month period, aimed at quantitatively assessing the benefit provided by the two orthoses on walking and at qualitatively evaluating the changes in the quality of life and motor abilities. As already stated, CP is universally considered as a persistent but not unchangeable disorder of posture and movement. Conversely to this definition, some clinicians (4) have recently pointed out that movement disorders may be primarily caused by the presence of perceptive disorders, where perception is not merely the acquisition of sensory information, but an active process aimed at guiding the execution of movements through the integration of sensory information properly representing the state of one’s body and of the environment. Children with perceptive impairments show an overall fear of moving and the onset of strongly unnatural walking schemes directly caused by the presence of perceptive system disorders. The fourth section of the thesis thus deals with accurately defining the perceptive impairment exhibited by diplegic CP children. A detailed description of the clinical signs revealing the presence of the perceptive impairment, and a classification scheme of the clinical aspects of perceptual disorders is provided. In the end, a functional reaching test is proposed as an instrumental test able to disclosure the perceptive impairment. References 1. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol. 2002 Set;44(9):633-640. 2. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005 Ago;47(8):571-576. 3. Ingram TT. A study of cerebral palsy in the childhood population of Edinburgh. Arch. Dis. Child. 1955 Apr;30(150):85-98. 4. Ferrari A, Cioni G. The spastic forms of cerebral palsy : a guide to the assessment of adaptive functions. Milan: Springer; 2009. 5. Olney SJ, Wright MJ. Cerebral Palsy. Campbell S et al. Physical Therapy for Children. 2nd Ed. Philadelphia: Saunders. 2000;:533-570. 6. Desloovere K, Molenaers G, Van Gestel L, Huenaerts C, Van Campenhout A, Callewaert B, et al. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study. Gait Posture. 2006 Ott;24(2):142-151.
Resumo:
Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.
Resumo:
The importance of networks, in their broad sense, is rapidly and massively growing in modern-day society thanks to unprecedented communication capabilities offered by technology. In this context, the radio spectrum will be a primary resource to be preserved and not wasted. Therefore, the need for intelligent and automatic systems for in-depth spectrum analysis and monitoring will pave the way for a new set of opportunities and potential challenges. This thesis proposes a novel framework for automatic spectrum patrolling and the extraction of wireless network analytics. It aims to enhance the physical layer security of next generation wireless networks through the extraction and the analysis of dedicated analytical features. The framework consists of a spectrum sensing phase, carried out by a patrol composed of numerous radio-frequency (RF) sensing devices, followed by the extraction of a set of wireless network analytics. The methodology developed is blind, allowing spectrum sensing and analytics extraction of a network whose key features (i.e., number of nodes, physical layer signals, medium access protocol (MAC) and routing protocols) are unknown. Because of the wireless medium, over-the-air signals captured by the sensors are mixed; therefore, blind source separation (BSS) and measurement association are used to estimate the number of sources and separate the traffic patterns. After the separation, we put together a set of methodologies for extracting useful features of the wireless network, i.e., its logical topology, the application-level traffic patterns generated by the nodes, and their position. The whole framework is validated on an ad-hoc wireless network accounting for MAC protocol, packet collisions, nodes mobility, the spatial density of sensors, and channel impairments, such as path-loss, shadowing, and noise. The numerical results obtained by extensive and exhaustive simulations show that the proposed framework is consistent and can achieve the required performance.