4 resultados para active safety

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of new “green” and sustainable approaches to reduce food wastes, guaranteeing food quality, microbiological safety and the environmental sustainability, is of great interest for food industry. This PhD thesis, as part of the European project BioProMedFood (PRIMA–Section2 Programme), was focused on two strategies: the use of natural antimicrobials and the application of microbial strains isolated from spontaneously fermented products. The first part concerned the valorisation of microbial biodiversity of 15 Mediterranean spontaneously fermented sausages, through the isolation of autochthonous lactic acid bacteria (LAB) strains, mainly Latilactobacillus sakei, that were characterised regarding their safety and technological aspects. The most promising strains were tested as bio-protective cultures in fresh sausages, showing promising anti-listerial activity, or as starter cultures in fermented sausages. The second part of the research was focused on the use of natural compounds (phenolic extracts and essential oils from Juniperus oxycedrus needles and Rubus fruticosus leaves) with antimicrobial potential. They were tested in vitro against List. monocytogenes and Enterococcus faecium, showing differences in relation to species and type of extracts, but they hint at important possibilities for applications in specific foods. Concluding, this PhD thesis highlighted the great potential of traditional meat products as an isolation source of new strains with industrial importance. Moreover, the antimicrobial potential of compounds obtained from plant matrices opened promising perspectives to exploit them as “green” strategies to increase fresh food safety. The last topic of research, carry out in collaboration with Department of Nutrition and Food Sciences (University of Granada), investigated the effect of LAB fermentation on avocado leaves by-products, focusing on the bio-availability of phenolic compounds in the plant extracts, caused by microbial metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Glyphosate is the most widely applied pesticide worldwide and it is an active ingredient of all glyphosate-based herbicides (GBHs), including in the formulation “Roundup” . It is unclear if the glyphosate present in ground water can be absorbed and translocated in different parts of the pants, particularly wheat plants. This indeed represents an important aspect for productivity (being this a powerful herbicide) and organic certification of the products (the use of glyphosate is not admitted in organic farming and the ubiquitous contamination of glyphosate in water might in theory affect the level of glyphosate in the plants). Overall, epidemiological, in vivo and in vitro studies available in literature present conflicting findings on the safety of glyphosate. METHODS: The work performed for this PhD thesis aimed to experimentally test the root absorption and the eventual translocation of the glyphosate herbicide in the different parts of the wheat plant (Triticum durum) starting from ground water. Furthermore we aimed to experimentally test the effects of the exposure to GBHs at doses of glyphosate considered to be “safe”, the US ADI of 1.75 mg/kg bw/day, defined as the chronic Reference Dose (cRfD) determined by the US EPA, in in vivo models (Sprague-Dawley rats) and in vitro models (Caco2 and L929). RESULTS: All the experimental absorption studies on wheat plants performed have given negative results in terms of the presence of glyphosate or AMPA in the grain of durum wheat. On the other hand the experimental safety studies on in vitro and in vivo models highlighted different effects at doses currently considered safe for humans and with no effects in animals. CONCLUSION: Overall the integration of the findings from absorption in plants and safety studies will serve as solid evidence-base for risk assessment and productive strategies for agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed.