5 resultados para absorption properties

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of tropospheric trace consituents. NO2 is an important trace gas in the lower troposphere due to the fact that it is involved in the production of tropospheric ozone; ozone and nitrogen dioxide are key factors in determining the quality of air with consequences, for example, on human health and the growth of vegetation. To understand the NO2 and ozone chemistry in more detail not only the concentrations at ground but also the acquisition of the vertical distribution is necessary. In fact, the budget of nitrogen oxides and ozone in the atmosphere is determined both by local emissions and non-local chemical and dynamical processes (i.e. diffusion and transport at various scales) that greatly impact on their vertical and temporal distribution: thus a tool to resolve the vertical profile information is really important. Useful measurement techniques for atmospheric trace species should fulfill at least two main requirements. First, they must be sufficiently sensitive to detect the species under consideration at their ambient concentration levels. Second, they must be specific, which means that the results of the measurement of a particular species must be neither positively nor negatively influenced by any other trace species simultaneously present in the probed volume of air. Air monitoring by spectroscopic techniques has proven to be a very useful tool to fulfill these desirable requirements as well as a number of other important properties. During the last decades, many such instruments have been developed which are based on the absorption properties of the constituents in various regions of the electromagnetic spectrum, ranging from the far infrared to the ultraviolet. Among them, Differential Optical Absorption Spectroscopy (DOAS) has played an important role. DOAS is an established remote sensing technique for atmospheric trace gases probing, which identifies and quantifies the trace gases in the atmosphere taking advantage of their molecular absorption structures in the near UV and visible wavelengths of the electromagnetic spectrum (from 0.25 μm to 0.75 μm). Passive DOAS, in particular, can detect the presence of a trace gas in terms of its integrated concentration over the atmospheric path from the sun to the receiver (the so called slant column density). The receiver can be located at ground, as well as on board an aircraft or a satellite platform. Passive DOAS has, therefore, a flexible measurement configuration that allows multiple applications. The ability to properly interpret passive DOAS measurements of atmospheric constituents depends crucially on how well the optical path of light collected by the system is understood. This is because the final product of DOAS is the concentration of a particular species integrated along the path that radiation covers in the atmosphere. This path is not known a priori and can only be evaluated by Radiative Transfer Models (RTMs). These models are used to calculate the so called vertical column density of a given trace gas, which is obtained by dividing the measured slant column density to the so called air mass factor, which is used to quantify the enhancement of the light path length within the absorber layers. In the case of the standard DOAS set-up, in which radiation is collected along the vertical direction (zenith-sky DOAS), calculations of the air mass factor have been made using “simple” single scattering radiative transfer models. This configuration has its highest sensitivity in the stratosphere, in particular during twilight. This is the result of the large enhancement in stratospheric light path at dawn and dusk combined with a relatively short tropospheric path. In order to increase the sensitivity of the instrument towards tropospheric signals, measurements with the telescope pointing the horizon (offaxis DOAS) have to be performed. In this circumstances, the light path in the lower layers can become very long and necessitate the use of radiative transfer models including multiple scattering, the full treatment of atmospheric sphericity and refraction. In this thesis, a recent development in the well-established DOAS technique is described, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS). The MAX-DOAS consists in the simultaneous use of several off-axis directions near the horizon: using this configuration, not only the sensitivity to tropospheric trace gases is greatly improved, but vertical profile information can also be retrieved by combining the simultaneous off-axis measurements with sophisticated RTM calculations and inversion techniques. In particular there is a need for a RTM which is capable of dealing with all the processes intervening along the light path, supporting all DOAS geometries used, and treating multiple scattering events with varying phase functions involved. To achieve these multiple goals a statistical approach based on the Monte Carlo technique should be used. A Monte Carlo RTM generates an ensemble of random photon paths between the light source and the detector, and uses these paths to reconstruct a remote sensing measurement. Within the present study, the Monte Carlo radiative transfer model PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) has been developed and used to correctly interpret the slant column densities obtained from MAX-DOAS measurements. In order to derive the vertical concentration profile of a trace gas from its slant column measurement, the AMF is only one part in the quantitative retrieval process. One indispensable requirement is a robust approach to invert the measurements and obtain the unknown concentrations, the air mass factors being known. For this purpose, in the present thesis, we have used the Chahine relaxation method. Ground-based Multiple AXis DOAS, combined with appropriate radiative transfer models and inversion techniques, is a promising tool for atmospheric studies in the lower troposphere and boundary layer, including the retrieval of profile information with a good degree of vertical resolution. This thesis has presented an application of this powerful comprehensive tool for the study of a preserved natural Mediterranean area (the Castel Porziano Estate, located 20 km South-West of Rome) where pollution is transported from remote sources. Application of this tool in densely populated or industrial areas is beginning to look particularly fruitful and represents an important subject for future studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of the present PhD thesis is to investigate the properties of innovative nano- materials with respect to the conversion of renewable energies to electrical and chemical energy. The materials have been synthesized and characterized by means of a wide spectrum of morphological, compositional and photophysical techniques, in order to get an insight into the correlation between the properties of each material and the activity towards different energy conversion applications. Two main topics are addressed: in the first part of the thesis the light harvesting in pyrene functionalized silicon nanocrystals has been discussed, suggesting an original approach to suc- cessfully increase the absorption properties of these nanocrystals. The interaction of these nanocrystals was then studied, in order to give a deeper insight on the charge and energy extraction, preparing the way to implement SiNCs as active material in optoelectronic devices and photovoltaic cells. In addition to this, the luminescence of SiNCs has been exploited to increase the efficiency of conventional photovoltaic cells by means of two innovative architectures. Specifically, SiNCs has been used as luminescent downshifting layer in dye sensitized solar cells, and they were shown to be very promising light emitters in luminescent solar concentrators. The second part of the thesis was concerned on the production of hydrogen by platinum nanoparticles coupled to either electro-active or photo-active materials. Within this context, the electrocatalytic activity of platinum nanoparticles supported on exfoliated graphene has been studied, preparing an high-efficiency catalyst and disclosing the role of the exfoliation technique towards the catalytic activity. Furthermore, platinum nanoparticles have been synthesized within photoactive dendrimers, providing the first proof of concept of a dendrimer-based photocatalytic system for the hydrogen production where both sensitizer and catalyst are anchored to a single scaffold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional lime mortar is composed of hydrated lime, sand and water. Besides these constituents it may also contain additives aiming to modify fresh mortar´s properties and/or to improve hardened mortar´s strength and durability. Already in the first civilizations various additives were used to enhance mortar´s quality, among the organic additives, linseed oil was one of the most common. From literature we know that it was used already in Roman period to reduce water permeability of a mortar, but the mechanism and the technology, e.g. effects of different dosages, are not clearly explained. There are only few works studying the effect of oil experimentally. Knowing the function of oil in historical mortars is important for designing a new compatible repair mortar. Moreover, linseed oil addition could increase the sometimes insufficient durability of lime-based mortars used for reparation and it could be a natural alternative to synthetic additives. In the present study, the effect of linseed oil on the properties of six various lime-based mortars has been studied. Mortars´ compositions have been selected with respect to composition of historical mortars, but also mortars used in a modern restoration practise have been tested. Oil was added in two different concentrations – 1% and 3% by the weight of binder. The addition of 1% of linseed oil has proved to have positive effect on mortars´ properties. It improves mechanical characteristics and limits water absorption into mortar without affecting significantly the total open porosity or decreasing the degree of carbonation. On the other hand, the 3% addition of linseed oil is making mortar to be almost hydrophobic, but it markedly decreases mortars´ strength. However, all types of tested lime-based mortars with the oil addition showed significantly decreased water and salt solution absorption by capillary rise. Addition of oil into mortars is also decreasing the proportion of pores which are easily accessible to water. Furthermore, mortars with linseed oil showed significantly improved resistance to salt crystallization and freeze-thaw cycles. On the base of the obtained results, the addition of 1% of linseed oil can be taken into consideration in the design of mortars meant to repair or replace historic mortars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chalcogenides are chemical compounds with at least one of the following three chemical elements: Sulfur (S), Selenium (Sn), and Tellurium (Te). As opposed to other materials, chalcogenide atomic arrangement can quickly and reversibly inter-change between crystalline, amorphous and liquid phases. Therefore they are also called phase change materials. As a results, chalcogenide thermal, optical, structural, electronic, electrical properties change pronouncedly and significantly with the phase they are in, leading to a host of different applications in different areas. The noticeable optical reflectivity difference between crystalline and amorphous phases has allowed optical storage devices to be made. Their very high thermal conductivity and heat fusion provided remarkable benefits in the frame of thermal energy storage for heating and cooling in residential and commercial buildings. The outstanding resistivity difference between crystalline and amorphous phases led to a significant improvement of solid state storage devices from the power consumption to the re-writability to say nothing of the shrinkability. This work focuses on a better understanding from a simulative stand point of the electronic, vibrational and optical properties for the crystalline phases (hexagonal and faced-centered cubic). The electronic properties are calculated implementing the density functional theory combined with pseudo-potentials, plane waves and the local density approximation. The phonon properties are computed using the density functional perturbation theory. The phonon dispersion and spectrum are calculated using the density functional perturbation theory. As it relates to the optical constants, the real part dielectric function is calculated through the Drude-Lorentz expression. The imaginary part results from the real part through the Kramers-Kronig transformation. The refractive index, the extinctive and absorption coefficients are analytically calculated from the dielectric function. The transmission and reflection coefficients are calculated using the Fresnel equations. All calculated optical constants compare well the experimental ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this PhD thesis the crashworthiness topic is studied with the perspective of the development of a small-scale experimental test able to characterize a material in terms of energy absorption. The material properties obtained are then used to validate a nu- merical model of the experimental test itself. Consequently, the numerical model, calibrated on the specific ma- terial, can be extended to more complex structures and used to simulate their energy absorption behavior. The experimental activity started at University of Washington in Seattle, WA (USA) and continued at Second Faculty of Engi- neering, University of Bologna, Forl`ı (Italy), where the numerical model for the simulation of the experimental test was implemented and optimized.