18 resultados para abiotic and biotic stresses

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aimed to characterise two large tetraploid germplasm collections. The Global Durum Panel, involving modern cultivars and landrances and the Tetraploid Global Collection which comprises all the tetraploid wheat subgroups. Two distinct parallel studies were carried out. The first is focused on the characterisation of both collection for yield and quality related traits. The panel were phenotyped for two consecutive years each. In this phase the following traits were collected: the number of fertile spikelets per spike, the number of fertile florets of central spikelet for the spike-related traits. The following grain related traits were also phenotyped: the thousand kernel weight, the average grain area, average grain length, average grain width, grain brightness, grain redness, grain yellowness. GWAS analysis were performed for each collected trait and major QTLs were subjected to candidate gene analysis. Major QTLs emerging from GWA study were located on chromosome 2A with a strong bibliographic evidence for grain number-related traits such as the fertile spikelet number, the number of fertile florets per central spikelet. On the other hand two evident peaks were detected on chromosomes 6A and 7B for grain size and weight related traits. The second work was focused on the characterisation of the Global Durum Panel for root system architecture components, namely the root growth angle. GWAS analysis was perfomed and three major QTLs were detected on chromosome 2A, 6A and 7A. These three QTLs all have a bibliographic evidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chief obstacle to understand the metabolic origin of life or RNA-based life is to identify a plausible mechanism for overcoming the clutter wrought by abiotic chemistry. Probably trough simple abiotic and then prebiotic reactions we could arrive to simple pre-RNA molecules. Here we report a possible preibiotic synthesis for heterocyclic compounds, and a self-assembling process of adenosine phosphates a constituent of RNA. In these processes we use a simple and prebiotic phosphorus cyclic compounds, as P4O10 and its derivatives. The processes are driven by the formation of hypercoordinated species that activate the processes by a factor of 106-8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wheat amylase-trypsin inhibitors (ATIs) are a family of wheat proteins, which play an important role in plant defence against pest attacks. ATIs are also of great interest for their impact on human health and recently ATIs have been identified as major stimulators of innate immune cells. In this study, ten selected wheat samples with different ploidy level and year of release were used for the agronomic trial, for in vitro enzymatic assays and for ATIs gene sequencing. Wheat samples were grown under organic farming management during three consecutive cropping years at two growing areas (Italy and USA). The PCA analysis performed on the deduced amino acid sequences of four representative ATIs genes (WMAI, WDAI, WTAI-CM3, CMx) evidenced that the ten wheat varieties can be differentiated on the basis of their ploidy level, but not with respect to ancient or recently developed wheat genotypes. The results from in vitro alpha-amylase and trypsin inhibitory activities showed high variability among the ten wheat genotypes and the contribution of the genotype and the cropping year was significant for both inhibitory activities. The hexaploid wheat genotypes showed the highest inhibitory activities. Einkorn showed a very low or even absent alpha-amylase inhibitory activity and the highest trypsin inhibitory activity. It was not possible to differentiate ancient and recently developed wheat genotypes on the basis of their ATIs activity. The weather conditions differently affected the two inhibitory activities. In both cultivation areas, higher precipitation and lower high mean temperatures correlated with lower alpha-amylase inhibitory activities, while there were different correlations considering trypsin inhibitory activity for the two growing areas. The protein content negatively correlated with both inhibitory activities in USA and Italy. This information can be important in the understanding of plant defence mechanisms in relation to the effect of both genotype and abiotic and biotic stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, consumers became more aware and sensible in respect to environment and food safety matters. They are more and more interested in organic agriculture and markets and tend to prefer ‘organic’ products more than their traditional counterparts. To increase the quality and reduce the cost of production in organic and low-input agriculture, the 6FP-European “QLIF” project investigated the use of natural products such as bio-inoculants. They are mostly composed by arbuscular mycorrhizal fungi and other microorganisms, so-called “plant probiotic” microorganisms (PPM), because they help keeping an high yield, even under abiotic and biotic stressful conditions. Italian laws (DLgs 217, 2006) have recently included them as “special fertilizers”. This thesis focuses on the use of special fertilizers when growing tomatoes with organic methods in open field conditions, and the effects they induce on yield, quality and microbial rhizospheric communities. The primary objective was to achieve a better understanding of how plant-probiotic micro-flora management could buffer future reduction of external inputs, while keeping tomato fruit yield, quality and system sustainability. We studied microbial rhizospheric communities with statistical, molecular and histological methods. This work have demonstrated that long-lasting introduction of inoculum positively affected micorrhizal colonization and resistance against pathogens. Instead repeated introduction of compost negatively affected tomato quality, likely because it destabilized the ripening process, leading to over-ripening and increasing the amount of not-marketable product. Instead. After two years without any significant difference, the third year extreme combinations of inoculum and compost inputs (low inoculum with high amounts of compost, or vice versa) increased mycorrhizal colonization. As a result, in order to reduce production costs, we recommend using only inoculum rather than compost. Secondly, this thesis analyses how mycorrhizal colonization varies in respect to different tomato cultivars and experimental field locations. We found statistically significant differences between locations and between arbuscular colonization patterns per variety. To confirm these histological findings, we started a set of molecular experiments. The thesis discusses preliminary results and recommends their continuation and refinement to gather the complete results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was aimed at investigating the physical-chemical properties and the behaviour in physiological environment of two classes of bioceramics: calcium silicate-based dental cements and alumina-based femoral heads for hip joint prostheses. The material characterization was performed using spectroscopic techniques such as that allow to obtain information on the molecular structure of the species and phases present in the analyzed samples. Raman, infrared and fluorescence spectroscopy was principally used. Calcium silicate cements, such as MTA (Mineral Trioxide Aggregate), are hydraulic materials that can set in presence of water: this characteristic makes them suitable for oral surgery and in particular as root-end filling materials. With the aim to improve the properties of commercial MTA cements, several MTA-based experimental formulations have been tested with regard to bioactivity (i.e. apatite forming ability) upon ageing in simulated body fluids. The formation of a bone-like apatite layer may support the integration in bone tissue and represents an essential requirement for osteoconduction and osteoinduction. The spectroscopic studies demonstrated that the experimental materials under study had a good bioactivity and were able to remineralize demineralized dentin. . Bioceramics thanks to their excellent mechanical properties and chemical resistance, are widely used as alternative to polymer (UHMWPE) and metal alloys (Cr-Co) for hip-joint prostesis. In order to investigate the in vivo wear mechanisms of three different generations of commercial bioceramics femoral heads (Biolox®, Biolox® forte, and Biolox® delta), fluorescence and Raman spectroscopy were used to investigate the surface properties and residual stresses of retrieved implants. Spectroscopic results suggested different wear mechanisms in the three sets of retrievals. Since Biolox® delta is a relatively recent material, the Raman results on its retrievals has been reported for the first time allowing to validate the in vitro ageing protocols proposed in the literature to simulate the effects of the in vivo wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CdTe and Cu(In,Ga)Se2 (CIGS) thin film solar cells are fabricated, electrically characterized and modelled in this thesis. We start from the fabrication of CdTe thin film devices where the R.F. magnetron sputtering system is used to deposit the CdS/CdTe based solar cells. The chlorine post-growth treatment is modified in order to uniformly cover the cell surface and reduce the probability of pinholes and shunting pathways creation which, in turn, reduces the series resistance. The deionized water etching is proposed, for the first time, as the simplest solution to optimize the effect of shunt resistance, stability and metal-semiconductor inter-diffusion at the back contact. In continue, oxygen incorporation is proposed while CdTe layer deposition. This technique has been rarely examined through R.F sputtering deposition of such devices. The above experiments are characterized electrically and optically by current-voltage characterization, scanning electron microscopy, x-ray diffraction and optical spectroscopy. Furthermore, for the first time, the degradation rate of CdTe devices over time is numerically simulated through AMPS and SCAPS simulators. It is proposed that the instability of electrical parameters is coupled with the material properties and external stresses (bias, temperature and illumination). Then, CIGS materials are simulated and characterized by several techniques such as surface photovoltage spectroscopy is used (as a novel idea) to extract the band gap of graded band gap CIGS layers, surface or bulk defect states. The surface roughness is scanned by atomic force microscopy on nanometre scale to obtain the surface topography of the film. The modified equivalent circuits are proposed and the band gap graded profiles are simulated by AMPS simulator and several graded profiles are examined in order to optimize their thickness, grading strength and electrical parameters. Furthermore, the transport mechanisms and Auger generation phenomenon are modelled in CIGS devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this doctoral dissertation, a comprehensive methodological approach for the assessment of river embankments safety conditions, based on the integrated use of laboratory testing, physical modelling and finite element (FE) numerical simulations, is proposed, with the aim of contributing to a better understanding of the effect of time-dependent hydraulic boundary conditions on the hydro-mechanical response of river embankments. The case study and materials selected for the present research project are representative for the riverbank systems of Alpine and Apennine tributaries of the main river Po (Northern Italy), which have recently experienced various sudden overall collapses. The outcomes of a centrifuge test carried out under the enhanced gravity field of 50-g, on a riverbank model, made of a compacted silty sand mixture, overlying a homogeneous clayey silt foundation layer and subjected to a simulated flood event, have been considered for the definition of a robust and realistic experimental benchmark. In order to reproduce the observed experimental behaviour, a first set of numerical simulations has been carried out by assuming, for both the embankments and the foundation unit, rigid soil porous media, under partially saturated conditions. Mechanical and hydraulic soil properties adopted in the numerical analyses have been carefully estimated based on standard saturated triaxial, oedometer and constant head permeability tests. Afterwards, advanced suction-controlled laboratory tests, have been carried out to investigate the effect of suction and confining stresses on the shear strength and compressibility characteristics of the filling material and a second set of numerical simulations has been run, taking into account the soil parameters updated based on the most recent tests. The final aim of the study is the quantitative estimation of the predictive capabilities of the calibrated numerical tools, by systematically comparing the results of the FE simulations to the experimental benchmark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La valutazione dei rischi associati all’operatività dei sistemi di stoccaggio, quali la sismicità indotta e la subsidenza, è requisito basilare per una loro corretta gestione e progettazione, e passa attraverso la definizione dell’influenza sullo stato tensionale delle variazioni di pressione di poro nel sottosuolo. Principale scopo di questo progetto è lo sviluppo di una metodologia in grado di quantificare le deformazioni dei reservoir in funzione della pressione di poro, di tarare i modelli utilizzati con casi studio che presentino dati di monitoraggio reali, tali da consentire un confronto con le previsioni di modello. In questa tesi, la teoria delle inomogeneità è stata utilizzata, tramite un approccio semianalitico, per definire le variazioni dei campi elastici derivanti dalle operazioni di prelievo e immissione di fluidi in serbatoi geologici. Estensione, forma e magnitudo delle variazioni di stress indotte sono state valutate tramite il concetto di variazione dello sforzo critico secondo il criterio di rottura di Coulomb, tramite un’analisi numerica agli elementi finiti. La metodologia sviluppata è stata applicata e tarata su due reservoir sfruttati e riconvertiti a sistemi di stoccaggio che presentano dataset, geologia, petrofisica, e condizioni operative differenti. Sono state calcolate le variazioni dei campi elastici e la subsidenza; è stata mappata la variazione di sforzo critico di Coulomb per entrambi i casi. I risultati ottenuti mostrano buon accordo con le osservazioni dei monitoraggi, suggerendo la bontà della metodologia e indicando la scarsa probabilità di sismicità indotta. Questo progetto ha consentito la creazione di una piattaforma metodologica di rapido ed efficace utilizzo, per stimare l’influenza dei sistemi di stoccaggio di gas sullo stato tensionale della crosta terrestre; in fase di stoccaggio, permette di monitorare le deformazioni e gli sforzi indotti; in fase di progettazione, consente di valutare le strategie operative per monitorare e mitigare i rischi geologici associati a questi sistemi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill., Solanum lycopersicon L.) is one of the most popular vegetable throughout the world, and the importance of its cultivation is threatened by a wide array of pathogens. In the last twenty years this plant has been successfully used as a model plant to investigate the induction of defense pathways after exposure to fungal, bacterial and abiotic molecules, showing triggering of different mechanisms of resistance. Understanding these mechanisms in order to improve crop protection is a main goal for Plant Pathology. The aim of this study was to search for general or race-specific molecules able to determine in Solanum lycopersicon immune responses attributable to the main systems of plant defense: non-host, host-specific and induced resistance. Exopolysaccharides extracted by three fungal species (Aureobasidium pullulans, Cryphonectria parasitica and Epicoccum purpurascens), were able to induce transcription of pathogenesis-related (PR) proteins and accumulation of enzymes related to defense in tomato plants cv Money Maker,using the chemical inducer Bion® as a positive control. During the thesis, several Pseudomonas spp. strains were also isolated and tested for their antimicrobial activity and ability to produce antibiotics. Using as a positive control jasmonic acid, one of the selected strain was shown to induce a form of systemic resistance in tomato. Transcription of PRs and reduction of disease severity against the leaf pathogen Pseduomonas syringae pv. tomato was determined in tomato plants cv Money Maker and cv Perfect Peel, ensuring no direct contact between the selected rhizobacteria and the aerial part of the plant. To conclude this work, race-specific resistance of tomato against the leaf mold Cladosporium fulvum is also deepened, describing the project followed at the Phytopathology Laboratory of Wageningen (NL) in 2007, dealing with localization of a specific R-Avr interaction in transfected tomato protoplast cultures through fluorescence microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Europe, the current demand for vegetable oils and the need to find alternative crops for the regions most affected by climate change (i.e., Mediterranean basin) may be a launchpad for camelina [Camelina sativa (L.) Crantz] to be steadily introduced in European cropping systems. Camelina is mainly known for the unique composition of its oil, with a fatty acids profile including more than 50% content of essential linoleic and linolenic fatty acids, and a high tocopherol content. Being tocopherols part of the vitamin E family of antioxidants, the added value of growing camelina in harsh environments could be the enhancement of tocopherol content in camelina oil, thus having a more stable and nutritionally valuable product. With the final purpose of fully valorize camelina as a tolerant, valuable-oil producing crop for the Mediterranean basin, the main aim of this study was to investigate whether and how sowing date, cultivar choice, and abiotic stresses can affect tocopherol content and composition in camelina oil. The results showed that cultivar choice and growing conditions influenced total tocopherol, γ-tocopherol, and α-tocopherol contents. Moreover, heat stress trial revealed that high temperature increased α-tocopherol content, while no effect was observed in total tocopherols and in γ-tocopherol content. Finally, drought increased total tocopherols in camelina, and in drought-sensitive lines an increase in α-tocopherol was observed. This study allowed to acquire awareness on camelina resistance to abiotic stresses, coupled with a better knowledge on tocopherol content and composition in relation to cultivar, sowing date, and abiotic stresses. This will have an impact for the introduction of camelina as an alternative crop in harsher environments, such as the Mediterranean basin, to produce an oil suitable for food, feed, and industrial applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The aim of the present thesis was to better understand the physiological role of the phytohormones jasmonates (JAs) and abscisic acid (ABA) during fruit ripening in prospect of a possible field application of JAs and ABA to improve fruit yield and quality. In particular, the effects of exogenous application of these substances at different fruit developmental stages and under different experimental conditions were evaluated. Some aspects of the water relations upon ABA treatment were also analysed. Three fruit species, peach (Prunus persica L. Batsch), golden (Actinidia chinensis) and green kiwifruit (Actinidia deliciosa), and several of their cvs, were used for the trials. Different experimental models were adopted: fruits in planta, detached fruit, detached branches with fruit, girdled branches and micropropagated plants. The work was structured into four sets of experiments as follows: (i) Pre-harvest methyl jasmonate (MJ) application was performed at S3/S4 transition under field conditions in Redhaven peach; ethylene production, ripening index, fruit quality and shelf-life were assessed showing that MJ-treated fruit were firmer and thus less ripe than controls as confirmed by the Index of Absorbance Difference (IAD), but exhibited a shorter shelf-life due to an increase in ethylene production. Moreover, the time course of the expression of ethylene-, auxin- and other ripening-related genes was determined. Ripening-related ACO1 and ACS1 transcript accumulation was inhibited though transiently by MJ, and gene expression of the ethylene receptor ETR2 and of the ethylene-related transcription factor ERF2 was also altered. The time course of the expression of several auxin-related genes was strongly affected by MJ suggesting an increase in auxin biosynthesis, altered auxin conjugation and release as well as perception and transport; the need for a correct ethylene/auxin balance during ripening was confirmed. (ii) Pre- and post-harvest ABA applications were carried out under field conditions in Flaminia and O’Henry peach and Stark Red Gold nectarine fruit; ethylene production, ripening index, fruit quality and shelf-life were assessed. Results show that pre-harvest ABA applications increase fruit size and skin color intensity. Also post-harvest ABA treatments alter ripening-related parameters; in particular, while ethylene production is impaired in ABA-treated fruit soluble solids concentration (SSC) is enhanced. Following field ABA applications stem water potential was modified since ABA-treated peach trees retain more water. (iii) Pre- and post-harvest ABA and PDJ treatments were carried out in both kiwifruit species under field conditions at different fruit developmental stages and in post-harvest. Ripening index, fruit quality, plant transpiration, photosynthesis and stomatal conductance were assessed. Pre-harvest treatments enhance SSC in the two cvs and flesh color development in golden kiwifruit. Post-harvest applications of either ABA or ABA plus PDJ lead to increased SSC. In addition, ABA reduces gas exchanges in A. deliciosa. (iv) Spray, drench and dipping ABA treatments were performed in micropropagated peach plants and in peach and nectarine detached branches; plant water use and transpiration, biomass production and fruit dehydration were determined. In both plants and branches ABA significantly reduces water use and fruit dehydration. No negative effects on biomass production were detected. The present information, mainly arising from plant growth regulator application in a field environment, where plants have to cope with multiple biotic and abiotic stresses, may implement the perspectives for the use of these substances in the control of fruit ripening.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Strawberry (Fragaria × ananassa) is an important soft fruit but easily to be infected by pathogens. Anthracnose and gray mold are two of the most destructive diseases of strawberry which lead to serious fruit rot. The first chapter introduced strawberry anthracnose caused by Colletotrichum acutatum. The infection strategy, disease cycle and management of C. acutatum on strawberry were reported. Likewise, the second chapter summarized the infection strategy of Botrytis cinerea and the defense responses of strawberry. As we already know white unripe strawberry fruits are more resistant to C. acutatum than red ripe fruits. During the interaction between strawberry white/red fruit and C. acutaum, a mannose binding lectin gene, FaMBL1, was found to be the most up-regulated gene and induced exclusively in white fruit. FaMBL1 belongs to the G-type lectin family which has important roles in plant development and defense process. To get insight into the role of FaMBL1, genome-wide identification was carried out on G-type lectin gene family in Fragaria vesca and the results were showed in chapter 3. G-type lectin genes make up a large family in F. vesca. Active expression upon biotic/abiotic stresses suggested a potential role of G-lectin genes in strawberry defenses. Hence, stable transgenic strawberry plants with FaMBL1 gene overexpressed were generated. Transformed strawberry plants were screened and identified. The results were showed in chapter 4, content of disease-related phytohormone, jasmonic acid, was found decreased in overexpressing lines compared with wild type (WT). Petioles inoculated by C. fioriniae of overexpressing lines had lower disease incidence than WT. Leaves of overexpressing lines challenged by B. cinerea showed remarkably smaller lesion diameters compared with WT. The chitinase 2-1 (FaChi2-1) showed higher expression in overexpressing lines than in WT during the interaction with B. cinerea, which could be related with the lower susceptibility of overexpressing lines.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Besides their own adaptation strategies, plants might exploit microbial symbionts for overcoming both biotic and abiotic stresses and increase fitness. The current scenario of rapid climate change is demanding more sustainable agricultural management practices. The application of microbe-based products as a valid alternative to synthetic pesticides and fertilizers and their use to overcome stresses exacerbated by climate change, have been reviewed in the first part of this thesis. Berry fruits are widely cultivated and appreciated for their aromatic and nutraceutical properties. This thesis is focused on the role of plant and fruit microbiome on strawberry and raspberry growth, resistance, fruit quality and aroma. A taxonomical and functional description of the microbiome of different organs of three strawberry genotypes was performed both by traditional cultural dependent method and Next Generation Sequencing technique, highlighting a significant role of plant organs and genotype in determining the composition of microbial communities. Additionally, a selection of bacteria native of strawberry plants were isolated and screened for their plant growth promoting abilities and tested under the biotic stress of Xanthomonas fragariae infection and the abiotic stress of induced salinity. The monitoring of biometric parameters allowed the selection of a more restricted panel of bacterial strains, whose beneficial potential was tested in coordinated inoculations, or singularly. Raspberry plant was used for investigating the effect of cultivation method in determining fruit microbiome, and its consequent influence of berry quality and aroma. Interestingly, the cultivation method strongly influenced fruit nutraceutical traits, aroma and epiphytic bacterial biocoenosis. The involvement of the bacterial microbiota in fruit aroma determination was evaluated by performing GC–MS analysis of VOCs occurring in control, sterile and artificially reinoculated berries and by characterizing control and reinoculated berry microbiome. Differently treated berries showed significantly different aromatic profile, confirming the role of bacteria in fruit aroma development.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Durum wheat (Triticum durum) is an important crop that has been used for millennia for human consumption, and modern breeding can take advantage of the wide variability useful for the adaptation to new challenges. Novel beneficial alleles can be found in wild relatives and landraces thus enhancing crop adaptation to many biotic and abiotic stresses. This dissertation considers the source of variability from both before and after wheat domestication, that caused a loss of potentially useful alleles. Chapter 1. is the thesis introduction, which outlines the importance of wheat in the world, providing an historical overview of the domestication, the evolution mechanisms that led to the current forms of durum wheat and the use of wild relatives as a source of germplasm for future breeding programs is crucial. Moreover, the emergence of Z. tritici has been considered as the main pathogen of wheat since it contains extremely high levels of genetic variability and is thus difficult to control. Chapter 2. Considers the contribution of the phenotypic diversity of 242 accessions of Aegilops tauschii from the Open Wild Wheat Consortium, involved in wheat domestication, provided with whole-genome resequencing. The accessions were phenotyped both in the field and in controlled conditions and A k-mer-based GWAS was performed to identify genomic regions involved in useful traits. Chapter 3. Describes the genetic basis of resistance to Z. tritici in a durum wheat elite diversity panel representative of the germplasm bred in Mediterranean. Quantitative trait loci (QTL) analysis results revealed several loci involved in the STB response that were found in several chromosome regions with a high infection rate. The genomic regions associated with STB resistance identified in this study could be of interest for marker assisted selection (MAS) in durum wheat breeding programs.