2 resultados para Zwitterionic

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial capsular polysaccharides (PS) which naturally contain zwitterionic charge motifs (ZPS) possess specific immunostimulatory activity, leading to direct activation of antigen-presenting cells (APCs) through Toll-like receptor 2 (TLR2) and of T cells in co-culture systems. When administered intraperitoneally, ZPS and bacteria expressing them are involved in the induction or regulation of T-cell dependent inflammatory processes such as intra-abdominal abscess formation. Moreover it has been published that ZPSs are processed to low molecular weight carbohydrates and presented to T cells through a pathway similar to that used for protein antigens. These findings were in contrast with the paradigm according to which polysaccharides are T-independent antigens unable to be presented in association with MHC class II molecules and unable to induce a protective immune response. For this reason in glycoconjugate vaccines polysaccharides often need to be conjugated to a carrier protein to induce protection. The aim of our work was to generate vaccine candidates with antigen and adjuvant properties in one molecule by the chemical introduction of a positive charge into naturally anionic PS from group B streptococcus (GBS). The resulting zwitterionic PS (ZPS) has the ability to activate human and mouse APCs, and in mixed co-cultures of monocytes and T cells, ZPS induce MHC II-dependent T-cell proliferation and up-regulation of activation markers. TLR2 transfectants show reporter gene transcription upon incubation with ZPS and these stimulatory qualities can be blocked by anti-TLR2 mAbs or by the destruction of the zwitterionic motif. However, in vivo, ZPS used alone as vaccine antigen failed to induce protection against GBS challenge, a result which does not confirm the above mentioned postulate that ZPS are T-cell dependent Ags by virtue of their charge motif. Thus to make ZPS visible to the immune system we have conjugated ZPS with a carrier protein. ZPS-glycoconjugates induce higher T cell and Ab responses to carrier and PS, respectively, compared to control PS-glycoconjugates made with the native polysaccharide form. Moreover, protection of mothers or neonate offspring from lethal GBS challenge is better when mothers are immunized with ZPS-conjugates compared to immunization with PS-conjugates. In TLR2 knockout mice, ZPS-conjugates lose both their increased immunogenicity and protective effect after vaccination. When ZPS are co-administered as adjuvants with unconjugated tetanus toxoid (TT), they have the ability to increase the TT-specific antibody titer. In conclusion, glycoconjugates containing ZPS are potent vaccines. They target Ag to TLR2-expressing APCs and activate these APCs, leading to better T cell priming and ultimately to higher protective Ab titers. Thus, rational chemical design can generate potent novel PS-adjuvants with wide application, including glycoconjugates and co-administration with unrelated protein Ags.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main topic of my Ph.D. thesis is the study of nucleophilic and electrophilic aromatic substitution reaction, in particular from a mechanistic point of view. The research was mainly focused on the reactivity of superactivated aromatic systems. In spite of their high reactivity (hence the high reaction’s rate), we were able to identify and in some case to isolate -complexes until now only hypothesized. For example, interesting results comes from the study of the protonation of the supernucleophiles tris(dialkylamino)benzenes. However, the best result obtained in this field was the isolation and structural characterization of the first stables zwitterionic Wheland-Meisenheimer complexes by using 2,4-dipyrrolidine-1,3-thiazole as supernucleophile and 4,6-dinitrobenzofuroxan or 4,6-dinitrotetrazolepyridine as superelectrophile. These reactions were also studied by means of computational chemistry, which allowed us to better investigate on the energetic and properties of the reactions and reactants studied. We also discovered, in some case fortuitously, some relevant properties and application of the compounds we synthesized, such as fluorescence in solid state and nanoparticles, or textile dyeing. We decided to investigate all these findings also by collaborating with other research groups. During a period in the “Laboratoire de Structure et Réactivité des Systèmes Moléculaires Complexes-SRSMC, Université de Lorraine et CNRS, France, I carried out computational studies on new iron complexes for the use as dyes in Dye Sensitized Solar Cells (DSSC). Furthermore, thanks to this new expertise, I was involved in a collaboration for the study of the ligands’ interaction in biological systems. A collaboration with University of Urbino allowed us to investigate on the reactivity of 1,2-diaza-1,3-dienes toward nucleophiles such as amino and phosphine derivatives, which led to the synthesis of new products some of which are 6 or 7 member heterocycles containing both phosphorus and nitrogen atoms.