2 resultados para Zero current switching (ZCS) converters

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the peak-to-peak output current ripple amplitude for multiphase and multilevel inverters is presented in this PhD thesis. The current ripple is calculated on the basis of the alternating voltage component, and peak-to-peak value is defined by the current slopes and application times of the voltage levels in a switching period. Detailed analytical expressions of peak-to-peak current ripple distribution over a fundamental period are given as function of the modulation index. For all the cases, reference is made to centered and symmetrical switching patterns, generated either by carrier-based or space vector PWM. Starting from the definition and the analysis of the output current ripple in three-phase two-level inverters, the theoretical developments have been extended to the case of multiphase inverters, with emphasis on the five- and seven-phase inverters. The instantaneous current ripple is introduced for a generic balanced multiphase loads consisting of series RL impedance and ac back emf (RLE). Simplified and effective expressions to account for the maximum of the output current ripple have been defined. The peak-to-peak current ripple diagrams are presented and discussed. The analysis of the output current ripple has been extended also to multilevel inverters, specifically three-phase three-level inverters. Also in this case, the current ripple analysis is carried out for a balanced three-phase system consisting of series RL impedance and ac back emf (RLE), representing both motor loads and grid-connected applications. The peak-to-peak current ripple diagrams are presented and discussed. In addition, simulation and experimental results are carried out to prove the validity of the analytical developments in all the cases. The cases with different phase numbers and with different number of levels are compared among them, and some useful conclusions have been pointed out. Furthermore, some application examples are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present dissertation aims to explore, theoretically and experimentally, the problems and the potential advantages of different types of power converters for “Smart Grid” applications, with particular emphasis on multi-level architectures, which are attracting a rising interest even for industrial requests. The models of the main multilevel architectures (Diode-Clamped and Cascaded) are shown. The best suited modulation strategies to function as a network interface are identified. In particular, the close correlation between PWM (Pulse Width Modulation) approach and SVM (Space Vector Modulation) approach is highlighted. An innovative multilevel topology called MMC (Modular Multilevel Converter) is investigated, and the single-phase, three-phase and "back to back" configurations are analyzed. Specific control techniques that can manage, in an appropriate way, the charge level of the numerous capacitors and handle the power flow in a flexible way are defined and experimentally validated. Another converter that is attracting interest in “Power Conditioning Systems” field is the “Matrix Converter”. Even in this architecture, the output voltage is multilevel. It offers an high quality input current, a bidirectional power flow and has the possibility to control the input power factor (i.e. possibility to participate to active and reactive power regulations). The implemented control system, that allows fast data acquisition for diagnostic purposes, is described and experimentally verified.