7 resultados para ZN2 IONS

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemists have long sought to extrapolate the power of biological catalysis and recognition to synthetic systems. These efforts have focused largely on low molecular weight catalysts and receptors; however, biological systems themselves rely almost exclusively on polymers, proteins and RNA, to perform complex chemical functions. Proteins and RNA are unique in their ability to adopt compact, well-ordered conformations, and specific folding provides precise spatial orientation of the functional groups that comprise the active site. These features suggest that identification of new polymer backbones with discrete and predictable folding propensities (foldamers) will provide a basis for design of molecular machines with unique capabilities. The foldamer approach complements current efforts to design unnatural properties into polypeptides and polynucleotides. The aim of this thesis is the synthesis and conformational studies of new classes of foldamers, using a peptidomimetic approach. Moreover their attitude to be utilized as ionophores, catalysts, and nanobiomaterials were analyzed in solution and in the solid state. This thesis is divided in thematically chapters that are reported below. It begins with a very general introduction (page 4) which is useful, but not strictly necessary, to the expert reader. It is worth mentioning that paragraph I.3 (page 22) is the starting point of this work and paragraph I.5 (page 32) isrequired to better understand the results of chapters 4 and 5. In chapter 1 (page 39) is reported the synthesis and conformational analysis of a novel class of foldamers containing (S)-3-homophenylglycine [(S)-3-hPhg] and D- 4-carboxy-oxazolidin-2-one (D-Oxd) residues in alternate order is reported. The experimental conformational analysis performed in solution by IR, 1HNMR, and CD spectroscopy unambiguously proved that these oligomers fold into ordered structures with increasing sequence length. Theoretical calculations employing ab initio MO theory suggest a helix with 11-membered hydrogenbonded rings as the preferred secondary structure type. The novel structures enrich the field of peptidic foldamers and might be useful in the mimicry of native peptides. In chapter 2 cyclo-(L-Ala-D-Oxd)3 and cyclo-(L-Ala-DOxd) 4 were prepared in the liquid phase with good overall yields and were utilized for bivalent ions chelation (Ca2+, Mg2+, Cu2+, Zn2+ and Hg2+); their chelation skill was analyzed with ESI-MS, CD and 1HNMR techniques and the best results were obtained with cyclo-(L-Ala-D-Oxd)3 and Mg2+ or Ca2+. Chapter 3 describes an application of oligopeptides as catalysts for aldol reactions. Paragraph 3.1 concerns the use of prolinamides as catalysts of the cross aldol addition of hydroxyacetone to aromatic aldeydes, whereas paragraphs 3.2 and 3.3 are about the catalyzed aldol addition of acetone to isatins. By means of DFT and AIM calculations, the steric and stereoelectronic effects that control the enantioselectivity in the cross-aldol addition of acetone to isatin catalysed by L-proline have been studied, also in the presence of small quantities of water. In chapter 4 is reported the synthesis and the analysis of a new fiber-like material, obtained from the selfaggregation of the dipeptide Boc-L-Phe-D-Oxd-OBn, which spontaneously forms uniform fibers consisting of parallel infinite linear chains arising from singleintermolecular N-HO=C hydrogen bonds. This is the absolute borderline case of a parallel -sheet structure. Longer oligomers of the same series with general formula Boc-(L-Phe-D-Oxd)n-OBn (where n = 2-5), are described in chapter 5. Their properties in solution and in the solid state were analyzed, in correlation with their attitude to form intramolecular hydrogen bond. In chapter 6 is reported the synthesis of imidazolidin-2- one-4-carboxylate and (tetrahydro)-pyrimidin-2-one-5- carboxylate, via an efficient modification of the Hofmann rearrangement. The reaction affords the desired compounds from protected asparagine or glutamine in good to high yield, using PhI(OAc)2 as source of iodine(III).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as off-on chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioconjugation of peptides and asymmetric synthesis of gem-difluoromethylene compounds are areas of the modern organic chemistry for which mild and selective methods continue to be developed. This thesis reports new methodologies for these two areas based on the use of stabilized carbenium ions. The reaction that makes the bioconjugation of peptides possible takes place via the direct nucleophilic substitution of alcohols and is driven by the spontaneous formation of stabilized carbenium ions in water. By reacting with the thiol group of cysteine in very mild conditions and with a high selectivity, these carbenium ions allow the site-specific ligation of polypeptides containing cysteine and their covalent derivatization with functionalized probes. The ligation of the indole ring of tryptophan, an emerging target in bioconjugation, is also shown and takes place in the same conditions. The second area investigated is the challenging access to optically active gem-difluoromethylene compounds. We describe a methodology relying on the synthesis of enantioenriched 1,3-benzodithioles intermediates that are shown to be precursors of the corresponding gem-difluoromethylene analogues by oxidative desulfurization-fluorination. This synthesis takes advantage of the highly enantioselective organocatalytic -alkylation of aldehydes with the benzodithiolylium ion and of the wide possibilities of synthetic transformations offered by the 1,3-benzodithiole group. This approach allows the asymmetric access to complex gem-difluoromethylene compounds through a late-stage fluorination step, thus avoiding the use of fluorinated building blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of the mitochondrial F1FO-ATPase activated by the natural cofactor Mg2+ or by Ca2+, were studied, mainly on heart mitochondria from swine, widely used in translational medicine. The Ca2+ driven conformational changes in the F1FO-ATPase form the mitochondrial permeability transition pore (mPTP), which triggers regulated cell death and is involved in severe pathologies. The Ca2+-activated F1FO-ATPase hydrolyzes ATP with kinetics slightly different from those of the Mg2+-ATPase. Known F1-ATPase inhibitors inhibit both the Ca2+-activated F1FO-ATPase and the mPTP formation strengthening the molecular link between them. The different Gd3+ effects on the Ca2+- and Mg2+-activated F1FO-ATPases confirm their difference as also phenylglyoxal which preferentially inhibits the Ca2+-activated F1FO-ATPase. The effects of phenylarsine and dibromobimane, which interact with differently distant Cys thiols, show that mPTP opening is ruled by nearby or distant dithiols. Bergamot polyphenols and melatonin inhibit the mPTP and ROS formation. H2S, a known cardiovascular protector, unaffects the F1FO-ATPase, but inhibits Ca2+ absorption and indirectly the mPTP, both in swine heart and mussel midgut gland mitochondria. New generation triazoles inhibit the Ca2+-activated F1FO-ATPase and the mPTP, but unaffect the Mg2+-activated F1FOATPase. In parallel, the energy metabolism was investigated in mammalian cells. In boar sperm ATP is mainly produced by mitochondrial oxidative phosphorylation (OXPHOS), even if it decreases over time because of less active mitochondria. Insufficient ATP may induce sperm dysfunction. Also, canine mesenchymal stem cells rely on OXPHOS; those from umbilical cord which produce more ATP than those from adipose tissue, seem preferable for transplant studies. The intestinal porcine enterocyte cell line IPEC-J2, used for human gut research, responds to different fetal bovine serum concentrations by remodeling OXPHOS without altering the bioenergetic parameters. The IPEC-J2 bioenergetics is modulated by Vitamin K vitamers. These data shoulder cell bioenergetics as precious tool for medical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy issues have always been a subject of concern to people. During the past 30 years, rechargeable Li-ion batteries (LIBs) have been widely used in portable electronic devices and power tools because of their high energy density and efficiency among practical secondary batteries. While the unevenly distribution of Lithium sources and the increasing cost of lithium-raw material can not satisfy the requirement for further cost reduction, especially for the grid-scale energy storage. Post-lithium ion batteries as promising replacement for LIBs have attracted wide attention, owing to their high abundant resources and adequate insertion potential. Similar with Li-ion batteries, finding a suitable electrode material is the key for the research and application of the post-Li ion batteries. In our project, we focus our study on Prussian blue analogues (PBAs), with formula AxM[M(CN)6]1-yyzH2O (0x2, 0<y<1), where A is alkali-metal ion, M and M are transition metal ions, represents the M(CN)6 vacancy, which are archetype of metal-organic framework, with 3D frameworks which allow for a facile insertion/ extraction of ions with negligible lattice strain. By substituting the metal sites with different transition metals, we can get a series of compounds that can be used as both cathode and anode material for both Li-ion and post-Li batteries. The most commonly studied PBAs are metal haxacyanoferrate, with the carbon-sites of -CN- ligands fix connected with Fe. Here, we synthesized three different PBAs: manganese hexacynoferrate (MnHCF), zinc hexacynoferrate (ZnHCF) and titanium hexacynoferrate (TiHCF), using co-precipitation method, and their electrochemical properties were tested in both aqueous Na+, K+, Mg2+, Zn2+ and organic Li+, Na+ electrolytes. Various X-ray techniques were employed to study their electronic and structural properties of electrodes and electrochemical reaction mechanism during cycling.