8 resultados para World Church of Gods Power
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Il lavoro che presento propone un’analisi di una chiesa africana indipendente in Italia, la Celestial Church Of Christ Worldwide (CCCW), cercando di mettere in luce il nesso tra religione, migrazione e il processo di ‘plunting churches’ (Kooning 2009) nel contesto italiano. Attraverso una ricerca sul campo, sono stati indagati i percorsi personali, familiari e comunitari dei membri di una ‘Celestial Parish’ presente nel comune di Brescia, ‘Ileri Oluwa Parish’, al fine di comprendere la natura dei processi identitari coinvolti nell’organizzazione della CCC in Italia. ‘Ileri Oluwa Parish’, in quanto luogo che denota una ‘chiesa individuale collegata ad una Diocesi’ (CCC Constitution (CCC Constitution, 107 (d) si rivela, nella materialità delle sue forme e dei ‘Devotional Services’ che in essa si svolgono, a ‘field of action’ (Lefebvre, 1991). La storia della chiesa, i fondamenti della sua dottrina e i significati comunicati attraverso le forme rituali e religiose che la stessa promuove, sono stati contestualizzati alla luce delle tensioni e delle strategie di potere che strutturano il campo. Le storie dei membri della parrocchia, percorsi di migrazione e mobilità in itinere, rappresentano la lente attraverso cui si è guardato alle relazioni vissute nel nome dello ‘Spirito’, e alla percezione stessa di ciò che gli stessi Celestians definiscono sacro, santo, puro e impuro. Lo sguardo fisso alla vita ordinaria di una Celestial parish in Italia, esteso nell’ultima parte dell’elaborato alla Celestial parish londinese, è stato fondamentale per capire l’intreccio di relazioni spirituali, reti familiari e mobilità degli individui sul territorio italiano ed europeo, processo che ribalta la condizione diasporica della CCC, trasformando una condizione di dispersione in un valore aggiunto, nella possibilità di nuove traiettorie territoriali e spazi di presenza religiosa e socioeconomica.
Resumo:
The safety systems of nuclear power plants rely on low-voltage power, instrumentation and control cables. Inside the containment area, cables operate in harsh environments, characterized by relatively high temperature and gamma-irradiation. As these cables are related to fundamental safety systems, they must be able to withstand unexpected accident conditions and, therefore, their condition assessment is of utmost importance as plants age and lifetime extensions are required. Nowadays, the integrity and functionality of these cables are monitored mainly through destructive test which requires specific laboratory. The investigation of electrical aging markers which can provide information about the state of the cable by non-destructive testing methods would improve significantly the present diagnostic techniques. This work has been made within the framework of the ADVANCE (Aging Diagnostic and Prognostics of Low-Voltage I\&C Cables) project, a FP7 European program. This Ph.D. thesis aims at studying the impact of aging on cable electrical parameters, in order to understand the evolution of the electrical properties associated with cable degradation. The identification of suitable aging markers requires the comparison of the electrical property variation with the physical/chemical degradation mechanisms of polymers for different insulating materials and compositions. The feasibility of non-destructive electrical condition monitoring techniques as potential substitutes for destructive methods will be finally discussed studying the correlation between electrical and mechanical properties. In this work, the electrical properties of cable insulators are monitored and characterized mainly by dielectric spectroscopy, polarization/depolarization current analysis and space charge distribution. Among these techniques, dielectric spectroscopy showed the most promising results; by means of dielectric spectroscopy it is possible to identify the frequency range where the properties are more sensitive to aging. In particular, the imaginary part of permittivity at high frequency, which is related to oxidation, has been identified as the most suitable aging marker based on electrical quantities.
Resumo:
The aim of this thesis is to develop a depth analysis of the inductive power transfer (or wireless power transfer, WPT) along a metamaterial composed of cells arranged in a planar configuration, in order to deliver power to a receiver sliding on them. In this way, the problem of the efficiency strongly affected by the weak coupling between emitter and receiver can be obviated, and the distance of transmission can significantly be increased. This study is made using a circuital approach and the magnetoinductive wave (MIW) theory, in order to simply explain the behavior of the transmission coefficient and efficiency from the circuital and experimental point of view. Moreover, flat spiral resonators are used as metamaterial cells, particularly indicated in literature for WPT metamaterials operating at MHz frequencies (5-30 MHz). Finally, this thesis presents a complete electrical characterization of multilayer and multiturn flat spiral resonators and, in particular, it proposes a new approach for the resistance calculation through finite element simulations, in order to consider all the high frequency parasitic effects. Multilayer and multiturn flat spiral resonators are studied in order to decrease the operating frequency down to kHz, maintaining small external dimensions and allowing the metamaterials to be supplied by electronic power converters (resonant inverters).
Resumo:
The present thesis is focused on wave energy, which is a particular kind of ocean energy, and is based on the activity carried out during the EU project SEA TITAN. The main scope of this work is the design of a power electronic section for an innovative wave energy extraction system based on a switched-reluctance machine. In the first chapter, the general features of marine wave energy harvesting are treated. The concept of Wave Energy Converter (WEC) is introduced as well as the mathematical description of the waves, their characterization and measurement, the WEC classification, the operating principles and the standardization framework. Also, detailed considerations on the environmental impact are presented. The SEA TITAN project is briefly described. The second chapter is dedicated to the technical issues of the SEA TITAN project, such as the operating principle, the performance optimization carried out in the project, the main innovations as well as interesting demonstrations on the behavior of the generator and its control. In the third chapter, the power electronics converters of SEA TITAN are described, and the design choices, procedures and calculations are shown, with a further insight into the application given by analyzing the MATLAB Simulink model of the system and its control scheme. Experimental tests are reported in the fourth chapter, with graphs and illustrations of the power electronic apparatus interfaced with the real machine. Finally, the conclusion in the fifth chapter offers a global overview of the project and opens further development pathways.
Resumo:
Power-to-Gas storage systems have the potential to address grid-stability issues that arise when an increasing share of power is generated from sources that have a highly variable output. Although the proof-of-concept of these has been promising, the behaviour of the processes in off-design conditions is not easily predictable. The primary aim of this PhD project was to evaluate the performance of an original Power-to-Gas system, made up of innovative components. To achieve this, a numerical model has been developed to simulate the characteristics and the behaviour of the several components when the whole system is coupled with a renewable source. The developed model has been applied to a large variety of scenarios, evaluating the performance of the considered process and exploiting a limited amount of experimental data. The model has been then used to compare different Power-to-Gas concepts, in a real scenario of functioning. Several goals have been achieved. In the concept phase, the possibility to thermally integrate the high temperature components has been demonstrated. Then, the parameters that affect the energy performance of a Power-to-Gas system coupled with a renewable source have been identified, providing general recommendations on the design of hybrid systems; these parameters are: 1) the ratio between the storage system size and the renewable generator size; 2) the type of coupled renewable source; 3) the related production profile. Finally, from the results of the comparative analysis, it is highlighted that configurations with a highly oversized renewable source with respect to the storage system show the maximum achievable profit.
Resumo:
Combined Cooling Heat and Power Generation (CCHP) or trigeneration has been considered worldwide as a suitable alternative to traditional energy systems in terms of significant energy saving and environmental conservation. The development and evaluation of a solar driven micro-CCHP system based on a ORC cogenerator and an Adsorption Chiller (AC) experimental prototypes has been the focus of this PhD research. The specific objectives of the overall project are: • To design, construct and evaluate an innovative Adsorption Chiller in order to improve the performances of the AC technology. • To thermodynamically model the proposed micro-scale solar driven CHP system and to prove that the concept of trigeneration through solar energy combined with an organic Rankine turbine cycle (ORC) and an adsorption chiller (AC) is suitable for residential applications.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.
Resumo:
The world is quickly changing, and the field of power electronics assumes a pivotal role in addressing the challenges posed by climate change, global warming, and energy management. The introduction of wide-bandgap semiconductors, particularly gallium nitride (GaN), in contrast to the traditional silicon technology, is leading to lightweight, compact and evermore efficient circuitry. However, GaN technology is not mature yet and still presents reliability issues which constrain its widespread adoption. Therefore, GaN reliability is a hotspot for the research community. Extensive efforts have been directed toward understanding the physical mechanisms underlying the performance and reliability of GaN power devices. The goal of this thesis is to propose a novel in-circuit degradation analysis in order to evaluate the long-term reliability of GaN-based power devices accurately. The in-circuit setup is based on measure-stress-measure methodology where a high-speed synchronous buck converter ensures the stress while the measure is performed by means of full I-V characterizations. The switch from stress mode to characterization mode and vice versa is automatic thanks to electromechanical and solid-state relays controlled by external unit control. Because these relays are located in critical paths of the converter layout, the design has required a comprehensive study of electrical and thermal problems originated by the use of GaN technology. In addition, during the validation phase of the converter, electromagnetic-lumped-element circuit simulations are carried out to monitor the signal integrity and junction temperature of the devices under test. However, the core of this work is the in-circuit reliability analysis conducted with 80 V GaN HEMTs under several operating conditions of the converter in order to figure out the main stressors which contribute to the device's degradation.