2 resultados para Windows:2023

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glyphosate-based herbicides (GBHs) are the most globally used herbicides raising the risk of environmental exposition. Carcinogenic effects are only one component of the multiple adverse health effects of Glyphosate and GBHs that have been reported. Questions related to hazards and corresponding risks identified in relation to endocrine disrupting effects are rising. The present study investigated the possible reproductive/developmental toxicity of GBHs administered to male and female Sprague-Dawley rats under various calendar of treatment. Assessments included maternal and reproductive outcome of F0 and F1 dams exposed to GBHs throughout pregnancy and lactation and developmental landmarks and sexual characteristics of offspring. The study was designed in two stages. In the first stage Glyphosate, or its commercial formulation Roundup Bioflow, was administered to rats at the dose of 1.75 mg/kg bw/day (Glyphosate US Acceptable Daily Intake) from the prenatal period until adulthood. In the second stage, multiple toxicological parameters were simultaneously assessed, including multigeneration reproductive/developmental toxicity of Glyphosate and two GBHs (Roundup Bioflow and Ranger Pro). Man-equivalent doses, beginning from 0.5 mg/kg bw/day (ADI Europe) up to 50 mg/kg bw/day (NOAEL Glyphosate), were administered to male and female rats, covering specific windows of biological susceptibility. The results of stage 1 and preliminary data from stage 2 experiments characterize GBHs as probable endocrine disruptors as suggested by: 1) androgen-like effects of Roundup Bioflow, including a significant increase of anogenital distances in both males and females, delay of first estrous and increased testosterone in females; 2) slight puberty onset anticipation in the high dose of Ranger Pro group, observed in the F1 generation treated from in utero life until adulthood; 3) a delayed balano-preputial separation achievement in the high dose of Ranger Pro-treated males exposed only during the peri-pubertal period, indicating a direct and specific effect of GBHs depending on the timing of exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AGC1 deficiency is a rare demyelinating disease caused by mutations in the SLC25A12 gene, which encodes for the mitochondrial glutamate-aspartate carrier 1 (AGC1/Alarar), highly expressed in the central nervous system. In neurons, impairment in AGC1 activity leads to reduction in N-acetyl-aspartate, the main lipid precursor for myelin synthesis (Profilo et al., 2017); in oligodendrocytes progenitors cells, AGC1 down regulation has been related to early arrest proliferation and premature differentiation (Petralla et al., 2019). Additionally, in vivo AGC1 deficiency models i.e., heterozygous mice for AGC1 knock-out and neurospheres from their subventricular zone, respectively, showed a global decrease in cells proliferation and a switch in neural stem cells (NSCs) commitment, with specific reduction in OPCs number and increase in neural and astrocytic pools (Petralla et al., 2019). Therefore, the present study aims to investigate the transcriptional and epigenetic regulation underlying the alterations observed in OPCs and NSCs biological mechanisms, in either AGC1 deficiency models of Oli-neu cells (murine immortalized oligodendrocytes precursors cells), partially silenced by a shRNA for SLC25A12 gene, and SVZ-derived neurospheres from AGC1+/- mice. Western blot and immunofluorescence analysis revealed significant variations in the expression of transcription factors involved in brain cells’ proliferation and differentiation, in association with altered histone post-translational modifications, as well as histone acetylases (HATs) and deacetylases (HDACs) activity/expression, suggesting an improper transcriptional and epigenetic regulation affecting both AGC1 deficiency in vitro models. Furthermore, given the large role of acetylation in controlling in specific time-windows OPC maturation (Hernandez and Casaccia; 2015), pharmacological HATs/HDACs inhibitions were performed, confirming the involvement of chromatin remodelling enzymes in the altered proliferation and early differentiation observed in the AGC1 deficiency models of siAGC1 Oli-neu cells and AGC1+/- mice-derived neurospheres.