17 resultados para Whole genome mapping
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Legionella is a Gram-negative bacterium that represent a public health issue, with heavy social and economic impact. Therefore, it is mandatory to provide a proper environmental surveillance and risk assessment plan to perform Legionella control in water distribution systems in hospital and community buildings. The thesis joins several methodologies in a unique workflow applied for the identification of non-pneumophila Legionella species (n-pL), starting from standard methods as culture and gene sequencing (mip and rpoB), and passing through innovative approaches as MALDI-TOF MS technique and whole genome sequencing (WGS). The results obtained, were compared to identify the Legionella isolates, and lead to four presumptive novel Legionella species identification. One of these four new isolates was characterized and recognized at taxonomy level with the name of Legionella bononiensis (the 64th Legionella species). The workflow applied in this thesis, help to increase the knowledge of Legionella environmental species, improving the description of the environment itself and the events that promote the growth of Legionella in their ecological niche. The correct identification and characterization of the isolates permit to prevent their spread in man-made environment and contain the occurrence of cases, clusters, or outbreaks. Therefore, the experimental work undertaken, could support the preventive measures during environmental and clinical surveillance, improving the study of species often underestimated or still unknown.
Resumo:
Background: WGS is increasingly used as a first-line diagnostic test for patients with rare genetic diseases such as neurodevelopmental disorders (NDD). Clinical applications require a robust infrastructure to support processing, storage and analysis of WGS data. The identification and interpretation of SVs from WGS data also needs to be improved. Finally, there is a need for a prioritization system that enables downstream clinical analysis and facilitates data interpretation. Here, we present the results of a clinical application of WGS in a cohort of patients with NDD. Methods: We developed highly portable workflows for processing WGS data, including alignment, quality control, and variant calling of SNVs and SVs. A benchmark analysis of state-of-the-art SV detection tools was performed to select the most accurate combination for SV calling. A gene-based prioritization system was also implemented to support variant interpretation. Results: Using a benchmark analysis, we selected the most accurate combination of tools to improve SV detection from WGS data and build a dedicated pipeline. Our workflows were used to process WGS data from 77 NDD patient-parent families. The prioritization system supported downstream analysis and enabled molecular diagnosis in 32% of patients, 25% of which were SVs and suggested a potential diagnosis in 20% of patients, requiring further investigation to achieve diagnostic certainty. Conclusion: Our data suggest that the integration of SNVs and SVs is a main factor that increases diagnostic yield by WGS and show that the adoption of a dedicated pipeline improves the process of variant detection and interpretation.
Resumo:
The artisanal food chain is enriched by a wide diversity of local food productions with delightful organoleptic characteristics and valuable nutritional properties. Despite their increasing worldwide popularity and appeal, several food safety challenges are addressed in artisanal facilities context suffering from less standardized processing conditions. In such scenario, recent advances in molecular typing and genomic surveillance (e.g., Whole Genome Sequencing [WGS]) represent an unprecedent solution capable of inferring sources of contamination as well as contributing to food safety along the artisanal food continuum. The overall objective of this PhD thesis was to explore potential microbial hazards among different artisanal food productions of animal origins (dairy and meat-derived) typical of the food culture and heritage landscape belonging to Mediterranean countries. Three different studies were then carried out, specifically focussing on: 1) compare the seasonal variability of microbiological quality and potential occurrence of microbial hazards in two batches of Italian artisanal fermented dairy and meat productions; 2) Investigate genetic relationships as well as virulome and resistome of foodborne pathogens isolated within dairy and meat-derived productions located in Italy, Spain, Portugal and Morocco; 3) investigate the population structure, virulome, resistome and mobilome of Klebsiella spp. isolates collected from study 1, including an extended range of public sequences.
Resumo:
This PhD Thesis is the result of my research activity in the last three years. My main research interest was centered on the evolution of mitochondrial genome (mtDNA), and on its usefulness as a phylogeographic and phylogenetic marker at different taxonomic levels in different taxa of Metazoa. From a methodological standpoint, my main effort was dedicated to the sequencing of complete mitochondrial genomes, and the approach to whole-genome sequencing was based on the application of Long-PCR and shotgun sequences. Moreover, this research project is a part of a bigger sequencing project of mtDNAs in many different Metazoans’ taxa, and I mostly dedicated myself to sequence and analyze mtDNAs in selected taxa of bivalves and hexapods (Insecta). Sequences of bivalve mtDNAs are particularly limited, and my study contributed to extend the sampling. Moreover, I used the bivalve Musculista senhousia as model taxon to investigate the molecular mechanisms and the evolutionary significance of their aberrant mode of mitochondrial inheritance (Doubly Uniparental Inheritance, see below). In Insects, I focused my attention on the Genus Bacillus (Insecta Phasmida). A detailed phylogenetic analysis was performed in order to assess phylogenetic relationships within the genus, and to investigate the placement of Phasmida in the phylogenetic tree of Insecta. The main goal of this part of my study was to add to the taxonomic coverage of sequenced mtDNAs in basal insects, which were only partially analyzed.
Resumo:
The DNA topology is an important modifier of DNA functions. Torsional stress is generated when right handed DNA is either over- or underwound, producing structural deformations which drive or are driven by processes such as replication, transcription, recombination and repair. DNA topoisomerases are molecular machines that regulate the topological state of the DNA in the cell. These enzymes accomplish this task by either passing one strand of the DNA through a break in the opposing strand or by passing a region of the duplex from the same or a different molecule through a double-stranded cut generated in the DNA. Because of their ability to cut one or two strands of DNA they are also target for some of the most successful anticancer drugs used in standard combination therapies of human cancers. An effective anticancer drug is Camptothecin (CPT) that specifically targets DNA topoisomerase 1 (TOP 1). The research project of the present thesis has been focused on the role of human TOP 1 during transcription and on the transcriptional consequences associated with TOP 1 inhibition by CPT in human cell lines. Previous findings demonstrate that TOP 1 inhibition by CPT perturbs RNA polymerase (RNAP II) density at promoters and along transcribed genes suggesting an involvement of TOP 1 in RNAP II promoter proximal pausing site. Within the transcription cycle, promoter pausing is a fundamental step the importance of which has been well established as a means of coupling elongation to RNA maturation. By measuring nascent RNA transcripts bound to chromatin, we demonstrated that TOP 1 inhibition by CPT can enhance RNAP II escape from promoter proximal pausing site of the human Hypoxia Inducible Factor 1 (HIF-1) and c-MYC genes in a dose dependent manner. This effect is dependent from Cdk7/Cdk9 activities since it can be reversed by the kinases inhibitor DRB. Since CPT affects RNAP II by promoting the hyperphosphorylation of its Rpb1 subunit the findings suggest that TOP 1inhibition by CPT may increase the activity of Cdks which in turn phosphorylate the Rpb1 subunit of RNAP II enhancing its escape from pausing. Interestingly, the transcriptional consequences of CPT induced topological stress are wider than expected. CPT increased co-transcriptional splicing of exon1 and 2 and markedly affected alternative splicing at exon 11. Surprisingly despite its well-established transcription inhibitory activity, CPT can trigger the production of a novel long RNA (5’aHIF-1) antisense to the human HIF-1 mRNA and a known antisense RNA at the 3’ end of the gene, while decreasing mRNA levels. The effects require TOP 1 and are independent from CPT induced DNA damage. Thus, when the supercoiling imbalance promoted by CPT occurs at promoter, it may trigger deregulation of the RNAP II pausing, increased chromatin accessibility and activation/derepression of antisense transcripts in a Cdks dependent manner. A changed balance of antisense transcripts and mRNAs may regulate the activity of HIF-1 and contribute to the control of tumor progression After focusing our TOP 1 investigations at a single gene level, we have extended the study to the whole genome by developing the “Topo-Seq” approach which generates a map of genome-wide distribution of sites of TOP 1 activity sites in human cells. The preliminary data revealed that TOP 1 preferentially localizes at intragenic regions and in particular at 5’ and 3’ ends of genes. Surprisingly upon TOP 1 downregulation, which impairs protein expression by 80%, TOP 1 molecules are mostly localized around 3’ ends of genes, thus suggesting that its activity is essential at these regions and can be compensate at 5’ ends. The developed procedure is a pioneer tool for the detection of TOP 1 cleavage sites across the genome and can open the way to further investigations of the enzyme roles in different nuclear processes.
Resumo:
I linfomi primitivi cutanei riconosciuti nella classificazione della WHO/EORTC si presentano come “entità cliniche distinte” su base clinica, morfologica, immunofenotipica e molecolare. Il fenotipo linfocitario T helper CD4+ caratterizza i CTCL, ma alcune entità a prognosi aggressiva presentano un immunofenotipo citotossico CD8+. Numerosi studi di citogenetica (CGH) e gene-expression profiling (GEP) sono stati condotti negli ultimi anni sui CTCL e sono state riscontrate numerose aberrazioni cromosomiche correlate ai meccanismi di controllo del ciclo cellulare. Scopo del nostro studio è la valutazione delle alterazioni genomiche coinvolte nella tumorigenesi di alcuni CTCL aggressivi: il linfoma extranodale NK/T nasal-type, il linfoma primitivo cutaneo aggressivo epidermotropo (AECTCL) e il gruppo dei PTCL/NOS pleomorfo CD8+. Il materiale bioptico dei pazienti è stato sottoposto alla metodica dell’array-CGH per identificare le anomalie cromosomiche; in alcuni casi di AECTCL è stata applicata la GEP, che evidenzia il profilo di espressione genica delle cellule neoplastiche. I dati ottenuti sono stati valutati in modo statistico, evidenziando le alterazioni cromosomiche comuni significative di ogni entità. In CGH, sono state evidenziate alcune aberrazioni comuni fra le entità studiate, la delezione di 9p21.3, l’amplificazione di 17q, 19p13, 19q13.11-q13.32 , 12q13 e 16p13.3, che determinano la delezione dei geni CDKN2A e CDKN2B e l’attivazione del JAK/STAT signaling pathway. Altre alterazioni definiscono l’amplificazione di c-MYC (8q24) e CCND1/CDK4-6 (11q13). In particolare, sono state evidenziate numerose anomalie genomiche comuni in casi di AECTCL e PTCL/NOS pleomorfo. L’applicazione della GEP in 5 casi di AECTCL ha confermato l’alterata espressione dei geni CDKN2A, JAK3 e STAT6, che potrebbero avere un ruolo diretto nella linfomagenesi. Lo studio di un numero maggiore di casi in GEP e l’introduzione delle nuove indagini molecolari come l’analisi dei miRNA, della whole-exome e whole genome sequences consentiranno di evidenziare alterazioni molecolari correlate con la prognosi, definendo anche nuovi target terapeutici.
Resumo:
MYC is a transcription factor that can activate transcription of several targets by direct binding to their promoters at specific DNA sequences (E-box). Recent findings have also shown that it can exert its biological role by repressing transcription of other set of genes. C-MYC can mediate repression on its target genes through interaction with factors bound to promoter regions but not through direct recognition of typical E-Boxes. In this thesis, we investigated whether MYCN can also repress gene transcription and how this is mechanistically achieved. Moreover, expression of TRKA, P75NTR and ABCC3 is attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and transcriptional repression of these three genes. We found that MYCN is physically associated with gene promoters in vivo in proximity of the transcriptional start sites and this association requires interactions with SP1 and/or MIZ-1. Furthermore, we show that this interaction could interfere with SP1 and MIZ-1 activation functions by recruiting co-repressors such as DNMT3a or HDACs. Studies in vitro suggest that MYCN interacts through distinct domains with SP1, MIZ-1 and HDAC1 supporting the idea that MYCN may form different complexes by interacting with different proteins. Re-expression of endogenous TRKA and P75NTR with exposure to the TSA sensitizes neuroblastoma to NGF-mediated apoptosis, whereas ectopic expression of ABCC3 decreases cell motility without interfering with growth. Finally, using shRNA whole genome library, we dissected the P75NTR repression trying to identify novel factors inside and/or outside MYCN complex for future therapeutic approaches. Overall, our results support a model in which MYCN can repress gene transcription by direct interaction with SP1 and/or MIZ-1, and provide further lines of evidence on the importance of transcriptional repression induced by Myc in tumor biology.
Resumo:
Epigenetic variability is a new mechanism for the study of human microevolution, because it creates both phenotypic diversity within an individual and within population. This mechanism constitutes an important reservoir for adaptation in response to new stimuli and recent studies have demonstrated that selective pressures shape not only the genetic code but also DNA methylation profiles. The aim of this thesis is the study of the role of DNA methylation changes in human adaptive processes, considering the Italian peninsula and macro-geographical areas. A whole-genome analysis of DNA methylation profile across the Italian penisula identified some genes whose methylation levels differ between individuals of different Italian districts (South, Centre and North of Italy). These genes are involved in nitrogen compound metabolism and genes involved in pathogens response. Considering individuals with different macro-geographical origins (individuals of Asians, European and African ancestry) more significant DMRs (differentially methylated regions) were identified and are located in genes involved in glucoronidation, in immune response as well as in cell comunication processes. A "profile" of each ancestry (African, Asian and European) was described. Moreover a deepen analysis of three candidate genes (KRTCAP3, MAD1L and BRSK2) in a cohort of individuals of different countries (Morocco, Nigeria, China and Philippines) living in Bologna, was performed in order to explore genetic and epigenetic diversity. Moreover this thesis have paved the way for the application of DNA methylation for the study of hystorical remains and in particular for the age-estimation of individuals starting from biological samples (such as teeth or blood). Noteworthy, a mathematical model that considered methylation values of DNA extracted from cementum and pulp of living individuals can estimate chronological age with high accuracy (median absolute difference between age estimated from DNA methylation and chronological age was 1.2 years).
Resumo:
This thesis presents AMR phenotypic evaluation and whole genome sequencing analysis of 288 Escherichia coli strains isolated from different sources (livestock, companion animal, wildlife, food and human) in Italy. Our data reflects general resistance trends in Europe, reporting tetracycline, ampicillin, sulfisoxazole and aminoglycosides resistance as the most common phenotypic AMR profile among livestock, pets, wildlife and humans. Identification of human and animal (livestock and companion animal) AMR profiles in niches with a rare (fishery, mollusc) or absent (vegetable, wild animal, wild boar) direct exposure to antimicrobials, suggests widespread environmental pollution with ARGs conferring resistance to these antimicrobials. Phenotypic resistance to highest priority critically important antimicrobials was mainly observed in food-producing animals and related food such as rabbit, poultry, beef and swine. Discrepancies between AMR phenotypic pattern and genetic profile were observed. In particular, phenotypic aminoglycoside, cephalosporin, meropenem, colistin resistance and ESBL profile did not have a genetic explanation in different cases. This data could suggest the diffusion of new genetic variants of ARGs, associated to these antimicrobial classes. Generally, our collection shows a virulence profile typical of extraintestinal pathogenic Escherichia coli (ExPEC) pathotype. Different pandemic and emerging ExPEC lineages were identified, in particular in poultry meat (ST10; ST23; ST69, ST117; ST131). Rabbit was suggested as a source of ST20-ST40 potential hybrid pathogens. Wildlife carried a high average number (10) of VAGs (mostly associated to ExPEC pathotype) and different predominant ExPEC lineages (ST23, ST117, ST648), suggesting its possible involvement in maintenance and diffusion of virulence determinants. In conclusion, our study provides important knowledge related to the phenotypic/genetic AMR and virulence profiles circulating in E. coli in Italy. The role of different niches in AMR dynamics has been discussed. In particular, food-producing animals are worthy of continued investigation as a source of potential zoonotic pathogens, meanwhile wildlife might contribute to VAGs spread.
Resumo:
INTRODUCTION: Esophageal adenocarcinoma (EAC) is a severe malignancy in terms of prognosis and mortality rate. Because its great genetic heterogeneity, disputes regarding classification, prevention and treatments are still unsolved. AIM: We investigated intra- and inter-EAC heterogeneity by defining EAC’s somatic mutational profile and the role of candidate microRNAs, to correlate the molecular profile of tumors to clinical outcomes and to identify biomarkers for classification. METHODS: 38 EAC cases were analyzed via high-throughput cell sorting technology combined with targeted sequencing and whole genome low-pass sequencing. Targeted sequencing of further 169 cases was performed to widen the study. miR221 and miR483-3p expression was profiled via qPCR in 112 EACs and correlation with clinical outcomes was investigated. RESULTS: 35/38 EACs carried at least one somatic mutation absent in stromal cells. TP53 was found mutated in 73.7% of cases. Selective sorting revealed tumor subclones with different mutational loads and copy number alterations, confirming the high intra-tumor heterogeneity of EAC. Mutations were in most cases at homozygous state, and we identified alterations that were missed with the whole-tumor analysis. Mutations in HNF1A gene, not previously associated with EAC, were identified in both cohorts. Higher expression of miR483-3p and miR221 was associated with poorer cancer specific survival (P=0.0293 and P=0.0059), and recurrence in the Lauren intestinal subtype (P=0.0459 and P=0.0002). Median expression levels of miRNAs were higher in patients with advanced tumor stages. The loss of SMAD4 immunoreactivity was significantly associated with poorer cancer specific survival and recurrence (P=0.0452; P=0.022 respectively). CONCLUSION: Combining selective sorting technology and next generation sequencing allowed to better define EAC inter- and intra-tumor heterogeneity. We identified HNF1A as a new mutated gene associated to EAC that could be involved in tumor progression and promising biomarkers such as SMAD4, miR221 and miR483-3p to identify patients at higher risk for more aggressive tumors.
Resumo:
Autism Spectrum Disorder (ASD) is a heterogeneous and highly heritable neurodevelopmental disorder with a complex genetic architecture, consisting of a combination of common low-risk and more penetrant rare variants. This PhD project aimed to explore the contribution of rare variants in ASD susceptibility through NGS approaches in a cohort of 106 ASD families including 125 ASD individuals. Firstly, I explored the contribution of inherited rare variants towards the ASD phenotype in a girl with a maternally inherited pathogenic NRXN1 deletion. Whole exome sequencing of the trio family identified an increased burden of deleterious variants in the proband that could modulate the CNV penetrance and determine the disease development. In the second part of the project, I investigated the role of rare variants emerging from whole genome sequencing in ASD aetiology. To properly manage and analyse sequencing data, a robust and efficient variant filtering and prioritization pipeline was developed, and by its application a stringent set of rare recessive-acting and ultra-rare variants was obtained. As a first follow-up, I performed a preliminary analysis on de novo variants, identifying the most likely deleterious variants and highlighting candidate genes for further analyses. In the third part of the project, considering the well-established involvement of calcium signalling in the molecular bases of ASD, I investigated the role of rare variants in voltage-gated calcium channels genes, that mainly regulate intracellular calcium concentration, and whose alterations have been correlated with enhanced ASD risk. Specifically, I functionally tested the effect of rare damaging variants identified in CACNA1H, showing that CACNA1H variation may be involved in ASD development by additively combining with other high risk variants. This project highlights the challenges in the analysis and interpretation of variants from NGS analysis in ASD, and underlines the importance of a comprehensive assessment of the genomic landscape of ASD individuals.
Resumo:
Nel periodo compreso tra il 2019 e il 2022 sono state testate differenti matrici biologiche di carnivori domestici e selvatici provenienti dall’Italia e da altri Paesi europei (Norvegia, Romania). Diversi saggi molecolari, tra cui real-time PCR, end-point PCR, semi-nested PCR, retrotrascrizione e rolling circle amplification, sono stati utilizzati per ricercare il DNA o l’RNA genomico di virus e batteri. Il sequenziamento dell’intero genoma o di geni informativi dei patogeni identificati ne ha inoltre consentito la caratterizzazione genetica e l’analisi filogenetica. Gli studi, svolti presso il Dipartimento di Scienze Mediche Veterinarie dell’Università di Bologna, erano focalizzati nei confronti di alcuni virus a DNA, come Carnivore protoparvovirus 1 in lupi dall’appennino italiano e cani dalla Romania, adenovirus canino di tipo 1 e 2 in cani e lupi provenienti dal territorio nazionale, circovirus canino in cani e lupi italiani e volpi rosse e artiche della Norvegia; virus a RNA, come il canine distemper virus in faine recuperate nel territorio italiano e il calicivirus felino in gatti con diagnosi di poliartrite; e batteri appartenenti alla specie Anaplasma phagocytophilum in gatti deceduti e sottoposti a necroscopia in Italia. Dai risultati ottenuti è emerso che gli agenti infettivi indagati circolano nelle popolazioni di carnivori domestici e selvatici in forma asintomatica o determinando talvolta sintomatologia clinica. In alcuni animali testati è stata rilevata la coinfezione con diversi agenti patogeni, condizione che può predisporre ad un aggravamento della sintomatologia clinica. Dall’analisi filogenetica sono emerse relazioni tra gli agenti infettivi rilevati nelle differenti specie animali suggerendone la trasmissione tra ospiti domestici e selvatici e confermando il ruolo epidemiologico svolto dei carnivori selvatici nel mantenimento dei patogeni nel territorio. Alla luce dei dati ottenuti, è importante sottolineare l’importanza delle misure di profilassi, in particolare la vaccinazione degli animali da compagnia, per ridurre la trasmissione e la diffusione degli agenti infettivi.
Resumo:
Durum wheat (Triticum durum) is an important crop that has been used for millennia for human consumption, and modern breeding can take advantage of the wide variability useful for the adaptation to new challenges. Novel beneficial alleles can be found in wild relatives and landraces thus enhancing crop adaptation to many biotic and abiotic stresses. This dissertation considers the source of variability from both before and after wheat domestication, that caused a loss of potentially useful alleles. Chapter 1. is the thesis introduction, which outlines the importance of wheat in the world, providing an historical overview of the domestication, the evolution mechanisms that led to the current forms of durum wheat and the use of wild relatives as a source of germplasm for future breeding programs is crucial. Moreover, the emergence of Z. tritici has been considered as the main pathogen of wheat since it contains extremely high levels of genetic variability and is thus difficult to control. Chapter 2. Considers the contribution of the phenotypic diversity of 242 accessions of Aegilops tauschii from the Open Wild Wheat Consortium, involved in wheat domestication, provided with whole-genome resequencing. The accessions were phenotyped both in the field and in controlled conditions and A k-mer-based GWAS was performed to identify genomic regions involved in useful traits. Chapter 3. Describes the genetic basis of resistance to Z. tritici in a durum wheat elite diversity panel representative of the germplasm bred in Mediterranean. Quantitative trait loci (QTL) analysis results revealed several loci involved in the STB response that were found in several chromosome regions with a high infection rate. The genomic regions associated with STB resistance identified in this study could be of interest for marker assisted selection (MAS) in durum wheat breeding programs.
Resumo:
Pathogenic aberrations in homologous recombination DNA repair (HRR) genes occur in approximately 1 to 4 men with advanced prostate cancer (PCa). Treatment with PARP inhibitors (PARPi) has recently been introduced for metastatic castration-resistant PCa patients, increasing clinicians' interest in the molecular characterization of all PCa patients. The limitations of using old, low-quality tumor tissue for genetic analysis, which is very common for PCa, can be overcome by using liquid biopsy as an alternative biomarker source. In this study, we aimed to evaluate the detection of molecular alterations in HRR genes on liquid biopsy compared with tumor tissue from PCa patients. Secondarily, we explored the genomic instability score (GIS), and a broader range of gene alterations for in-depth characterization of the PCa cohort. Plasma samples were collected from 63 patients with PCa. Sophia Homologous Recombination Solution (targeting 16 HRR genes) and shallow whole genome sequencing (sWGS) were used for genomic analysis of tissue DNA and circulating tumor DNA (ct). A total of 33 alterations (mainly on TP53, ATM, CHEK2, CDK12, and BRCA1/2) were identified in 28,5% of PCa plasma patients. By integrating the mutational and sWGS data, the HRR status of PCa patients was determined and a concordance agreement of 85,7% was identified with tumor tissue. A median GIS of 15 was obtained, reaching a score of 63 in 2 samples with double alterations, BRCA1 and TP53. We explored the PCa mutation landscape, and the most significant enriched pathways identified were the sphingosine 1-phosphate (S1P) receptor signaling and the PI3K-AKT-mTOR pathway. HRR analysis on FFPE and liquid biopsy samples show high concordance, demonstrating that the noninvasive ctDNA-enriched plasma can be an optimal alternative source for molecular SNV and CNV analysis. In addition, the evaluation of GIS and pathway interaction should be considered for more comprehensive molecular characterization in PCa patients.
Resumo:
The objective of this work is to characterize the genome of the chromosome 1 of A.thaliana, a small flowering plants used as a model organism in studies of biology and genetics, on the basis of a recent mathematical model of the genetic code. I analyze and compare different portions of the genome: genes, exons, coding sequences (CDS), introns, long introns, intergenes, untranslated regions (UTR) and regulatory sequences. In order to accomplish the task, I transformed nucleotide sequences into binary sequences based on the definition of the three different dichotomic classes. The descriptive analysis of binary strings indicate the presence of regularities in each portion of the genome considered. In particular, there are remarkable differences between coding sequences (CDS and exons) and non-coding sequences, suggesting that the frame is important only for coding sequences and that dichotomic classes can be useful to recognize them. Then, I assessed the existence of short-range dependence between binary sequences computed on the basis of the different dichotomic classes. I used three different measures of dependence: the well-known chi-squared test and two indices derived from the concept of entropy i.e. Mutual Information (MI) and Sρ, a normalized version of the “Bhattacharya Hellinger Matusita distance”. The results show that there is a significant short-range dependence structure only for the coding sequences whose existence is a clue of an underlying error detection and correction mechanism. No doubt, further studies are needed in order to assess how the information carried by dichotomic classes could discriminate between coding and noncoding sequence and, therefore, contribute to unveil the role of the mathematical structure in error detection and correction mechanisms. Still, I have shown the potential of the approach presented for understanding the management of genetic information.