8 resultados para Wetlands and natural resource management
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
Government policies play a critical role in influencing market conditions, institutions and overall agricultural productivity. The thesis therefore looks into the history of agriculture development in India. Taking a political economy perspective, the historical account looks at significant institutional and technological innovations carried out in pre- independent and post independent India. It further focuses on the Green Revolution in Asia, as forty years after; the agricultural community still faces the task of addressing recurrent issue of food security amidst emerging challenges, such as climate change. It examines the Green Revolution that took place in India during the late 1960s and 70s in a historical perspective, identifying two factors of institutional change and political leadership. Climate change in agriculture development has become a major concern to farmers, researchers and policy makers alike. However, there is little knowledge on the farmers’ perception to climate change and to the extent they coincide with actual climatic data. Using a qualitative approach,it looks into the perceptions of the farmers in four villages in the states of Maharashtra and Andhra Pradesh. While exploring the adaptation strategies, the chapter looks into the dynamics of who can afford a particular technology and who cannot and what leads to a particular adaptation decision thus determining the adaptive capacity in water management. The final section looks into the devolution of authority for natural resource management to local user groups through the Water Users’ Associations as an important approach to overcome the long-standing challenges of centralized state bureaucracies in India. It addresses the knowledge gap of why some local user groups are able to overcome governance challenges such as elite capture, while others-that work under the design principles developed by Elinor Ostrom. It draws conclusions on how local leadership, can be promoted to facilitate participatory irrigation management.
Resumo:
Wastewater management is an environmental and social burden that primarily affects populations in Low- and Middle-Income Countries and the global environment. Wastewater collection, treatment, and reuse have become urgent, especially considering that 80% of the world's wastewater is untreated or improperly treated and discharged directly into water bodies. In recent years, the role of wastewater treatment plants in a sustainable water cycle has become even more critical, as they are the final destination of the collected wastewater. Indeed, the management of wastewater treatment plants should play an essential role in achieving SDG target 6.3 of the United Nations 2030 Agenda for SD. In this context, water reuse, especially wastewater reuse, plays a key role. This research focuses on investigating the valorization of wastewater resources applying Appropriate Technologies and Natural Systems for wastewater treatment in two different Low- and Middle-Income Countries, the Palestinian Territories and Sub-Saharan Africa. The research objectives are: (1) Determine the characteristics and quality of wastewater in the two case studies analysed. (2) Identify Appropriate Technology to be used in the Palestinian Territories to treat wastewater for reuse in agriculture. (3) Assess the environmental, economic, and social impacts of this project. (4) Assess the feasibility of using natural wetlands for household wastewater treatment in Sub-Saharan region. The first study, conducted in Rafah, Gaza Strip, showed that implementing existing primary treatment plant with a natural secondary treatment plant properly optimized the wastewater quality for reuse in agriculture and was suitable for the study area. The second case study was conducted in Cape Coast, Ghana. It shows that the natural wetland studied is currently overly polluted and threatened by various anthropogenic factors that cannot remove pollutants from the incoming domestic wastewater. Therefore, some recommendations were made in order to improve the efficiency of this natural wetland.
Resumo:
Modern food systems are characterized by a high energy intensity as well as by the production of large amounts of waste, residuals and food losses. This inefficiency presents major consequences, in terms of GHG emissions, waste disposal, and natural resource depletion. The research hypothesis is that residual biomass material could contribute to the energetic needs of food systems, if recovered as an integrated renewable energy source (RES), leading to a sensitive reduction of the impacts of food systems, primarily in terms of fossil fuel consumption and GHG emissions. In order to assess these effects, a comparative life cycle assessment (LCA) has been conducted to compare two different food systems: a fossil fuel-based system and an integrated system with the use of residual as RES for self-consumption. The food product under analysis has been the peach nectar, from cultivation to end-of-life. The aim of this LCA is twofold. On one hand, it allows an evaluation of the energy inefficiencies related to agro-food waste. On the other hand, it illustrates how the integration of bioenergy into food systems could effectively contribute to reduce this inefficiency. Data about inputs and waste generated has been collected mainly through literature review and databases. Energy balance, GHG emissions (Global Warming Potential) and waste generation have been analyzed in order to identify the relative requirements and contribution of the different segments. An evaluation of the energy “loss” through the different categories of waste allowed to provide details about the consequences associated with its management and/or disposal. Results should provide an insight of the impacts associated with inefficiencies within food systems. The comparison provides a measure of the potential reuse of wasted biomass and the amount of energy recoverable, that could represent a first step for the formulation of specific policies on the integration of bioenergies for self-consumption.
Resumo:
Natural systems face pressures exerted by natural physical-chemical forcings and a myriad of co-occurring human stressors that may interact to cause larger than expected effects, thereby presenting a challenge to ecosystem management. This thesis aimed to develop new information that can contribute to reduce the existing knowledge gaps hampering the holistic management of multiple stressors. I undertook a review of the state-of-the-art methods to detect, quantify and predict stressor interactions, identifying techniques that could be applied in this thesis research. Then, I conducted a systematic review of saltmarsh multiple stressor studies in conjunction with a multiple stressor mapping exercise for the study system in order to infer potential important synergistic stressor interactions. This analysis identified key stressors that are affecting the study system, but also pointed to data gaps in terms of driver and pressure data and raised issues for potentially overlooked stressors. Using field mesocosms, I explored how a local stressor (nutrient availability) affects the responses of saltmarsh vegetation to a global stressor (increased inundation) in different soil types. Results indicate that saltmarsh vegetation would be more drastically affected by increased inundation in low than in medium organic matter soils, and especially in estuaries already under high nutrient availability. In another field experiment, I examined the challenges of managing co-occurring and potentially interacting local stressors on saltmarsh vegetation: recreational trampling and smothering by deposition of excess macroalgal wrack due to high nutrient loads. Trampling and wrack prevention had interacting effects, causing non-linear responses of the vegetation to simulated management of these stressors, such that vegetation recovered only in those treatments simulating the combined prevention of both stressors. During this research I detected, using molecular genetic methods, a widespread presence of S. anglica (and to a lesser extent S. townsendii), two previously unrecorded non-native Spartinas in the study areas.
Resumo:
- Aims: Hereditary Transthyretin Amyloidosis (ATTRv) is one of the leading etiologies of systemic amyloidosis with more than 135 mutations described and a broad spectrum of clinical manifestations. We aimed to provide a systematic description of a population of individuals carrying pathogenic mutations of transthyretin (TTR) gene and to investigate the major clinical events during follow up. - Methods: Observational, retrospective, cohort study including consecutive patients with mutations of TTR gene, admitted to a tertiary referral center in Bologna, Italy, between 1984 and 2022. - Results: Three hundred twenty-five patients were included: 106 asymptomatic carriers, 49 cardiac phenotype, 49 neurological phenotype and 121 mixed phenotype. Twenty-three different mutations were found, with Ile68Leu (41.8%), Val30Met (19%), and Glu89Gln (10%) being the most common. After a median follow-up of 51 months data from 290 subjects were analyzed; among them 111 (38.3%) died and 123 (42.4%) had a major clinical event (death or hospitalization for heart failure). Nine (11.5%) of the 78 asymptomatic carriers showed signs and symptoms of the disease. Carriers had a prognosis comparable to healthy population, while no significant differences were seen among the three phenotypes adjusted by age. Age at diagnosis, NYHA functional class, left ventricular ejection fraction, mPND score and disease-modifying therapy were independently associated with survival. - Conclusions: This study offers a wide and comprehensive overview of ATTRv from the point of view of a tertiary referral center in Italy. Three main phenotypes can be identified (cardiac, neurological and mixed) with specific clinical and instrumental features. Family screening programs are essential to identify paucisymptomatic affected patients or unaffected carriers of the mutation, to be followed through the years. Lastly, disease-modifying therapy represents an evolving cornerstone of the management of ATTRv, with a great impact on mortality.