11 resultados para Wetlands : functioning, biodiversity conservation and restoration
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Among the most representative materials of XX Century architectural heritage, this dissertation focuses on the cement-based ones, investigating some different fields where they were exploited. Primarily, concerning the surface preservation of cement-based materials used with aesthetic intent, new self-cleaning treatments based on titania nanoparticles embedded in inorganic matrices were tested. In order to consider the role of porosity, the treatments were applied to different kinds of materials (cement-based mortar, marble and concrete) and several analyses were conducted to investigate the morphology of the coatings, their photocatalytic effectiveness, their durability and the interaction between the coating and the substrate material. The outcomes showed that several parameters influence the treatment’s performances, in particular, the presence and nature of the matrix, the concentration and dispersion of nanoparticles and, in some cases, the amount of substrate material which interacts with the coatings. Secondly, this dissertation deals with the historic “Terranova” render, a colored dry-mix mortar largely widespread in Europe in the first half of XX Century, whose formulation is still basically unknown. Some original samples of supposedly Terranova renders were subjected to several characterization analyses and the results were compared to those of the original “Terranova” render of the Engineering Faculty in Bologna. Despite the recurrence of some features, defining a common formulation seemed to be challenging. Finally, the repair and conservation of structural reinforced concrete in heritage buildings were investigated, adopting the former “Casa del Fascio” in Predappio (FC, Italy) as case study. Three different materials and solutions were tested on a slab of the building, making its repair only from the intrados. Then several analyses were conducted both on site and in laboratory. Aside from the specific features characterizing every product, the results highlighted that the application method played a fundamental role in the effectiveness of the retrofit strategies.
Resumo:
The Nature-Based Solutions (NBS) concept and approach were developed to simultaneously face challenges such as risk mitigation and biodiversity conservation and restoration. NBSs have been endorsed by major International Organizations such as the EU, the FAO and World Bank that are pushing to enable a mainstreaming process. However, a shift from traditional engineering “grey” solutions to wider and standard adoption of NBS encounters technical, social, cultural, and normative barriers that have been identified with a qualitative content analysis of policy documents, reports and expert interviews. The case of the region Emilia-Romagna was studied by developing an analytical framework that brought together the social-ecological context, the governance system and the characteristics of specific NBSs.
Resumo:
The use of environmental DNA (eDNA) analysis as a monitoring tool is becoming more and more widespread. The eDNA metabarcoding methods allow rapid community assessments of different target taxa. This work is focused on the validation of the environmental DNA metabarcoding protocol for biodiversity assessment of freshwater habitats. Scolo Dosolo was chosen as study area and three sampling points were defined for traditional and eDNA analyses. The gutter is a 205 m long anthropic canal located in Sala Bolognese (Bologna, Italy). Fish community and freshwater invertebrate metazoans were the target groups for the analysis. After a preliminary study in summer 2019, 2020 was devoted to the sampling campaign with winter (January), spring (May), summer (July) and autumn (October) surveys. Alongside with the water samplings for the eDNA study, also traditional fish surveys using the electrofishing technique were performed to assess fish community composition; census on invertebrates was performed using an entomological net and a surber sampler. After in silico analysis, the MiFish primer set amplifying a fragment of the 12s rRNA gene was selected for bony fishes. For invertebrates the FWHF2 + FWHR2N primer combination, that amplifies a region of the mitochondrial coi gene, was chosen. Raw reads were analyzed through a bioinformatic pipeline based on OBITools metabarcoding programs package and QIIME2. The OBITools pipeline retrieved seven fish taxa and 54 invertebrate taxa belonging to six different phyla, while QIIME2 recovered eight fish taxa and 45 invertebrate taxa belonging to the same six phyla as the OBITools pipeline. The metabarcoding results were then compared with the traditional surveys data and bibliographic records. Overall, the validated protocol provides a reliable picture of the biodiversity of the study area and an efficient support to the traditional methods.
Resumo:
Climate-change related impacts, notably coastal erosion, inundation and flooding from sea level rise and storms, will increase in the coming decades enhancing the risks for coastal populations. Further recourse to coastal armoring and other engineered defenses to address risk reduction will exacerbate threats to coastal ecosystems. Alternatively, protection services provided by healthy ecosystems is emerging as a key element in climate adaptation and disaster risk management. I examined two distinct approaches to coastal defense on the base of their ecological and ecosystem conservation values. First, I analyzed the role of coastal ecosystems in providing services for hazard risk reduction. The value in wave attenuation of coral reefs was quantitatively demonstrated using a meta-analysis approach. Results indicate that coral reefs can provide wave attenuation comparable to hard engineering artificial defenses and at lower costs. Conservation and restoration of existing coral reefs are cost-effective management options for disaster risk reduction. Second, I evaluated the possibility to enhance the ecological value of artificial coastal defense structures (CDS) as habitats for marine communities. I documented the suitability of CDS to support native, ecologically relevant, habitat-forming canopy algae exploring the feasibility of enhancing CDS ecological value by promoting the growth of desired species. Juveniles of Cystoseira barbata can be successfully transplanted at both natural and artificial habitats and not affected by lack of surrounding adult algal individuals nor by substratum orientation. Transplantation success was limited by biotic disturbance from macrograzers on CDS compared to natural habitats. Future work should explore the reasons behind the different ecological functioning of artificial and natural habitats unraveling the factors and mechanisms that cause it. The comprehension of the functioning of systems associated with artificial habitats is the key to allow environmental managers to identify proper mitigation options and to forecast the impact of alternative coastal development plans.
Resumo:
Aims: the broad objective of this study is to investigate the ecological, biodiversity and conservation status of the coastal forests of Kenya fragments. The specific aims of the study are: (1) to investigate current quantitative trends in plant diversity; (2) develop a spatial and standardised vegetation database for the coastal forests Kenya; (3) investigate forest structure, species diversity and composition across the forests; (4) investigate the effect of forest fragment area on plant species diversity; (5) investigate phylogenetic diversity across these coastal remnants (6) assess vulnerability and provide conservation perspectives to concrete policy issues; (7) investigate plant and butterfly diversity correlation. Methods: I performed various analytical methods including species diversity metrics; multiple regression models for species-area relationship and small island effect; non-metric multidimensional scaling; ANOSIM; PERMANOVA; multiplicative beta diversity partitioning; species accumulation curve and species indicator analysis; statistical tests, rarefaction of species richness; phylogenetic diversity metrics of Phylogenetic diversity index, mean pairwise distance, mean nearest taxon distance, and their null-models: and Co-correspondence analysis. Results: developed the first large standardised, spatial and geo-referenced vegetation database for coastal forests of Kenya consisting of 600 plant species, across 25 forest fragments using 158 plots subdivided into 3160 subplots, 18 sacred forests and seven forest reserves; species diversity, composition and forest structure was significantly different across forest sites and between forest reserves and sacred forests, higher beta diversity, species-area relationship explained significant variability of plant diversity, small Island effect was not evident; sacred forests exhibited higher phylogenetic diversity compared to forest reserves; the threatened Red List species contributed higher evolutionary history; a strong correlation between plants and butterfly diversity. Conclusions: This study provides for the first time a standardized and large vegetation data. Results emphasizes need to improve sacred forests protection status and enhance forest connectivity across forest reserves and sacred forests.
Resumo:
In this thesis two major topics inherent with medical ultrasound images are addressed: deconvolution and segmentation. In the first case a deconvolution algorithm is described allowing statistically consistent maximum a posteriori estimates of the tissue reflectivity to be restored. These estimates are proven to provide a reliable source of information for achieving an accurate characterization of biological tissues through the ultrasound echo. The second topic involves the definition of a semi automatic algorithm for myocardium segmentation in 2D echocardiographic images. The results show that the proposed method can reduce inter- and intra observer variability in myocardial contours delineation and is feasible and accurate even on clinical data.
Resumo:
An appropriate management of fisheries resources can only be achieved with the continuous supply of information on the structure and biology of populations, in order to predict the temporal fluctuations. This study supports the importance of investigating the bio-ecology of increasingly exploited and poorly known species, such as gurnards (Osteichthyes, Triglidae) from Adriatic Sea (Mediterranean), to quantify their ecological role into marine community. It also focuses on investigate inter and intra-specific structuring factor of Adriatic population. These objectives were achieved by: 1) investigating aspects of the population dynamics; 2) studying the feeding biology through the examination of stomach contents; 3) using sagittal otoliths as potential marker of species life cycle; 4) getting preliminary data on mDNA phylogeny. Gurnards showed a specie-specific “critical size” coinciding with the start of sexual maturity, the tendency to migrate to greater depths, a change of diet from crustaceans to fish and an increase of variety of food items eaten. Distribution of prey items, predator size range and depth distribution were the main dimensions that influence the breadth of trophic niche and the relative difference amongst Adriatic gurnards. Several feeding preferences were individuated and a possible impact among bigger-size gurnards and other commercial fishes (anchovy, gadoids) and Crustacea (such as mantis prawn and shrimps) were to be necessary considered. Otolith studies showed that gurnard species have a very fast growth despite other results in other areas; intra-specific differences and the increase in the variability of otolith shape, sulcus acusticus shape, S:O ratios, sulcus acusticus external crystals arrangement were shown between juveniles and adults and were linked to growth (individual genetic factors) and to environmental conditions (e.g. depth and trophic niche distribution). In order to facilitate correct biological interpretation of data, molecular data were obtained for comparing morphological distance to genetic ones.
Resumo:
Research in art conservation has been developed from the early 1950s, giving a significant contribution to the conservation-restoration of cultural heritage artefacts. In fact, only through a profound knowledge about the nature and conditions of constituent materials, suitable decisions on the conservation and restoration measures can thus be adopted and preservation practices enhanced. The study of ancient artworks is particularly challenging as they can be considered as heterogeneous and multilayered systems where numerous interactions between the different components as well as degradation and ageing phenomena take place. However, difficulties to physically separate the different layers due to their thickness (1-200 µm) can result in the inaccurate attribution of the identified compounds to a specific layer. Therefore, details can only be analysed when the sample preparation method leaves the layer structure intact, as for example the preparation of embedding cross sections in synthetic resins. Hence, spatially resolved analytical techniques are required not only to exactly characterize the nature of the compounds but also to obtain precise chemical and physical information about ongoing changes. This thesis focuses on the application of FTIR microspectroscopic techniques for cultural heritage materials. The first section is aimed at introducing the use of FTIR microscopy in conservation science with a particular attention to the sampling criteria and sample preparation methods. The second section is aimed at evaluating and validating the use of different FTIR microscopic analytical methods applied to the study of different art conservation issues which may be encountered dealing with cultural heritage artefacts: the characterisation of the artistic execution technique (chapter II-1), the studies on degradation phenomena (chapter II-2) and finally the evaluation of protective treatments (chapter II-3). The third and last section is divided into three chapters which underline recent developments in FTIR spectroscopy for the characterisation of paint cross sections and in particular thin organic layers: a newly developed preparation method with embedding systems in infrared transparent salts (chapter III-1), the new opportunities offered by macro-ATR imaging spectroscopy (chapter III-2) and the possibilities achieved with the different FTIR microspectroscopic techniques nowadays available (chapter III-3). In chapter II-1, FTIR microspectroscopy as molecular analysis, is presented in an integrated approach with other analytical techniques. The proposed sequence is optimized in function of the limited quantity of sample available and this methodology permits to identify the painting materials and characterise the adopted execution technique and state of conservation. Chapter II-2 describes the characterisation of the degradation products with FTIR microscopy since the investigation on the ageing processes encountered in old artefacts represents one of the most important issues in conservation research. Metal carboxylates resulting from the interaction between pigments and binding media are characterized using synthesised metal palmitates and their production is detected on copper-, zinc-, manganese- and lead- (associated with lead carbonate) based pigments dispersed either in oil or egg tempera. Moreover, significant effects seem to be obtained with iron and cobalt (acceleration of the triglycerides hydrolysis). For the first time on sienna and umber paints, manganese carboxylates are also observed. Finally in chapter II-3, FTIR microscopy is combined with further elemental analyses to characterise and estimate the performances and stability of newly developed treatments, which should better fit conservation-restoration problems. In the second part, in chapter III-1, an innovative embedding system in potassium bromide is reported focusing on the characterisation and localisation of organic substances in cross sections. Not only the identification but also the distribution of proteinaceous, lipidic or resinaceous materials, are evidenced directly on different paint cross sections, especially in thin layers of the order of 10 µm. Chapter III-2 describes the use of a conventional diamond ATR accessory coupled with a focal plane array to obtain chemical images of multi-layered paint cross sections. A rapid and simple identification of the different compounds is achieved without the use of any infrared microscope objectives. Finally, the latest FTIR techniques available are highlighted in chapter III-3 in a comparative study for the characterisation of paint cross sections. Results in terms of spatial resolution, data quality and chemical information obtained are presented and in particular, a new FTIR microscope equipped with a linear array detector, which permits reducing the spatial resolution limit to approximately 5 µm, provides very promising results and may represent a good alternative to either mapping or imaging systems.
Resumo:
Ex-situ conservation and the in-situ conservation of natural habitats are the tools to conserve biodiversity. Habitats and ecosystems have been becoming altered by human activities and a growing number of species requires form of management to ensure their survival. Conservation queries become more complex and urgent. Developing scientifically based and innovative approaches to ex-situ conservation is necessary. Recent studies underline importance of gut microbiome in animal health with implications for animal conservation and management. Animal and human studies have demonstrated that environmental factors can impact gut microbiome composition. Within this scenario, the present work focused on species belonging to different taxa, reptiles and mammals: Aldabrachelys gigantea, the giant tortoise of the Seychelles islands and Indri indri, the greatest leaving lemur of Madagascar. The Seychelles giant tortoise is vulnerable species with declining population, whereas the indri is a critically endangered species that could reach the extinction within 25 years. Both need research to help them to survive. Tortoises live for very long time and to observe how they can afford the environmental changes is very difficult. Indris, instead, are able to survive only in a small area of the Madagascar forest, with a very strong link between the species’ survival and the environment. The obtained results underline importance of environmental factors, both in-situ and ex-situ, for species conservation. Microbiome could help the organisms to respond on a short timescale and cope with, environmental changes. However, species with long generation time might not be able to adapt to fast changes but bacteria with a short generation time can adapt on a shorter timescale allowing the host to cope with fluctuating environment. Gut microbiome plays an important role in an animal’s health and has the potential to improve the management of individuals under human care for conservation purposes.
Resumo:
Marine healthy ecosystems support life on Earth and human well-being thanks to their biodiversity, which is proven to decline mainly due to anthropogenic stressors. Monitoring how marine biodiversity changes trough space and time is needed to properly define and enroll effective actions towards habitat conservation and preservation. This is particularly needed in those areas that are very rich in species compared to their low surface extension and are characterized by strong anthropic pressures, such as the Mediterranean Sea. Subtidal rocky benthic Mediterranean habitats have a complex structural architecture, hosting a panoply of tiny organisms (cryptofauna) that inhabit crevices and caves, but that are still unknown. Different artificial standardized sampling structures (SSS) and methods have been developed and employed to characterize the cryptofauna, allowing for data replicability and comparability across regions. Organisms growing on these artificial structures can be identified coupling morphological taxonomy and DNA barcoding and metabarcoding. The metabarcoding allows for the identification of organisms in a bulk sample without morphological analysis, and it is based on comparing the genetic similarities of the assessed organisms with barcoding sequences present in online barcoding repositories. Nevertheless, barcoded species nowadays represent only a small portion of known species, and barcoding reference databases are not always curated and updated on a regular basis. In this Thesis I used an integrative approach to characterize benthic marine biodiversity, specifically coupling morphological and molecular techniques with the employment of SSS. Moreover, I upgraded the actual status of COI (cytochrome c oxidase subunit I) barcoding of marine metazoans, and I built a customized COI barcoding reference database for metabarcoding studies on temperate biogenic reefs. This work implemented the knowledge about diversity of Mediterranean marine communities, laying the groundworks for monitoring marine and environmental changes that will occur in the next future as consequences of anthropic and climate threats.
Resumo:
Ancient pavements are composed of a variety of preparatory or foundation layers constituting the substrate, and of a layer of tesserae, pebbles or marble slabs forming the surface of the floor. In other cases, the surface consists of a mortar layer beaten and polished. The term mosaic is associated with the presence of tesserae or pebbles, while the more general term pavement is used in all the cases. As past and modern excavations of ancient pavements demonstrated, all pavements do not necessarily display the stratigraphy of the substrate described in the ancient literary sources. In fact, the number and thickness of the preparatory layers, as well as the nature and the properties of their constituent materials, are often varying in pavements which are placed either in different sites or in different buildings within a same site or even in a same building. For such a reason, an investigation that takes account of the whole structure of the pavement is important when studying the archaeological context of the site where it is placed, when designing materials to be used for its maintenance and restoration, when documenting it and when presenting it to public. Five case studies represented by archaeological sites containing floor mosaics and other kind of pavements, dated to the Hellenistic and the Roman period, have been investigated by means of in situ and laboratory analyses. The results indicated that the characteristics of the studied pavements, namely the number and the thickness of the preparatory layers, and the properties of the mortars constituting them, vary according to the ancient use of the room where the pavements are placed and to the type of surface upon which they were built. The study contributed to the understanding of the function and the technology of the pavementsâ substrate and to the characterization of its constituent materials. Furthermore, the research underlined the importance of the investigation of the whole structure of the pavement, included the foundation surface, in the interpretation of the archaeological context where it is located. A series of practical applications of the results of the research, in the designing of repair mortars for pavements, in the documentation of ancient pavements in the conservation practice, and in the presentation to public in situ and in museums of ancient pavements, have been suggested.