6 resultados para Web, Application, WebApp, Ionic, Angular, SPA
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Il problema dell'antibiotico-resistenza è un problema di sanità pubblica per affrontare il quale è necessario un sistema di sorveglianza basato sulla raccolta e l'analisi dei dati epidemiologici di laboratorio. Il progetto di dottorato è consistito nello sviluppo di una applicazione web per la gestione di tali dati di antibiotico sensibilità di isolati clinici utilizzabile a livello di ospedale. Si è creata una piattaforma web associata a un database relazionale per avere un’applicazione dinamica che potesse essere aggiornata facilmente inserendo nuovi dati senza dover manualmente modificare le pagine HTML che compongono l’applicazione stessa. E’ stato utilizzato il database open-source MySQL in quanto presenta numerosi vantaggi: estremamente stabile, elevate prestazioni, supportato da una grande comunità online ed inoltre gratuito. Il contenuto dinamico dell’applicazione web deve essere generato da un linguaggio di programmazione tipo “scripting” che automatizzi operazioni di inserimento, modifica, cancellazione, visualizzazione di larghe quantità di dati. E’ stato scelto il PHP, linguaggio open-source sviluppato appositamente per la realizzazione di pagine web dinamiche, perfettamente utilizzabile con il database MySQL. E’ stata definita l’architettura del database creando le tabelle contenenti i dati e le relazioni tra di esse: le anagrafiche, i dati relativi ai campioni, microrganismi isolati e agli antibiogrammi con le categorie interpretative relative al dato antibiotico. Definite tabelle e relazioni del database è stato scritto il codice associato alle funzioni principali: inserimento manuale di antibiogrammi, importazione di antibiogrammi multipli provenienti da file esportati da strumenti automatizzati, modifica/eliminazione degli antibiogrammi precedenti inseriti nel sistema, analisi dei dati presenti nel database con tendenze e andamenti relativi alla prevalenza di specie microbiche e alla chemioresistenza degli stessi, corredate da grafici. Lo sviluppo ha incluso continui test delle funzioni via via implementate usando reali dati clinici e sono stati introdotti appositi controlli e l’introduzione di una semplice e pulita veste grafica.
Resumo:
This thesis focuses on automating the time-consuming task of manually counting activated neurons in fluorescent microscopy images, which is used to study the mechanisms underlying torpor. The traditional method of manual annotation can introduce bias and delay the outcome of experiments, so the author investigates a deep-learning-based procedure to automatize this task. The author explores two of the main convolutional-neural-network (CNNs) state-of-the-art architectures: UNet and ResUnet family model, and uses a counting-by-segmentation strategy to provide a justification of the objects considered during the counting process. The author also explores a weakly-supervised learning strategy that exploits only dot annotations. The author quantifies the advantages in terms of data reduction and counting performance boost obtainable with a transfer-learning approach and, specifically, a fine-tuning procedure. The author released the dataset used for the supervised use case and all the pre-training models, and designed a web application to share both the counting process pipeline developed in this work and the models pre-trained on the dataset analyzed in this work.
Resumo:
La Convenzione delle Nazioni Unite sui Diritti delle Persone con Disabilità (UNCRPD) riconosce il diritto di tutte le persone al lavoro “gli Stati Parti adottano misure adeguate a garantire alle persone con disabilità, su base di uguaglianza con gli altri, l’accesso all’ambiente fisico, ai trasporti, all’informazione e alla comunicazione, compresi i sistemi e le tecnologie di informazione e comunicazione e ad altre attrezzature e servizi aperti o forniti al pubblico”(United Nation 2016 p.14). Nonostante i progressi (in ambito politico culturale) che si stanno compiendo in ambito internazionale in termini di pari opportunità e di inclusione, le persone in situazione di disabilità continuano a incontrare barriere che limitano la loro partecipazione attiva al mondo del lavoro. A partire da questo scenario, la ricerca si propone di indagare i bisogni (es. di accoglienza, di accesso al contesto fisico e digitale, di partecipazione nella vita dell’azienda ecc.) delle persone con disabilità e di sviluppare una applicazione digitale (web app), rivolta alle imprese, finalizzata a monitorare e a promuovere l'inclusione lavorativa. Ripercorrendo il modello di progettazione del design thinking e valorizzando un processo di ricerca basato su metodi misti (qualitativi e qualitativi) è stato ideato Job inclusion for all; un ambiente digitale fondato sull’adattamento di due strumenti di “metariflessione”: l’Index for inclusion job version e l’employment role mapping. Lo strumento digitale prototipato è stato testato e validato, durante l’ultimo anno di ricerca, da parte di una equipe multidisciplinare internazionale; tale processo ha consentito di raccogliere feedback (rispetto alla rilevanza e alla chiarezza degli item, rispetto ai punti di forza e di debolezza) che hanno consentito di migliorare e implementare la versione finale del prototipo di web app.
Resumo:
Knowledge graphs and ontologies are closely related concepts in the field of knowledge representation. In recent years, knowledge graphs have gained increasing popularity and are serving as essential components in many knowledge engineering projects that view them as crucial to their success. The conceptual foundation of the knowledge graph is provided by ontologies. Ontology modeling is an iterative engineering process that consists of steps such as the elicitation and formalization of requirements, the development, testing, refactoring, and release of the ontology. The testing of the ontology is a crucial and occasionally overlooked step of the process due to the lack of integrated tools to support it. As a result of this gap in the state-of-the-art, the testing of the ontology is completed manually, which requires a considerable amount of time and effort from the ontology engineers. The lack of tool support is noticed in the requirement elicitation process as well. In this aspect, the rise in the adoption and accessibility of knowledge graphs allows for the development and use of automated tools to assist with the elicitation of requirements from such a complementary source of data. Therefore, this doctoral research is focused on developing methods and tools that support the requirement elicitation and testing steps of an ontology engineering process. To support the testing of the ontology, we have developed XDTesting, a web application that is integrated with the GitHub platform that serves as an ontology testing manager. Concurrently, to support the elicitation and documentation of competency questions, we have defined and implemented RevOnt, a method to extract competency questions from knowledge graphs. Both methods are evaluated through their implementation and the results are promising.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.
Resumo:
A Digital Scholarly Edition is a conceptually and structurally sophisticated entity. Throughout the centuries, diverse methodologies have been employed to reconstruct a text transmitted through one or multiple sources, resulting in various edition types. With the advent of digital technology in philology, these practices have undergone a significant transformation, compelling scholars to reconsider their approach in light of the web. In the digital age, philologists are expected to possess (too) advanced technical skills to prepare interactive and enriched editions, even though, in most cases, only mechanical or documentary editions are published online. The Śivadharma Database is a web Content Management System (CMS) designed to facilitate the preparation, publication, and updating of Digital Scholarly Editions. By providing scholars with a user-friendly CRUD web application to reconstruct and annotate a text, they can prepare their textus with additional components such as apparatus, notes, translations, citations, and parallels. It is possible by leveraging an annotation system based on HTML and graph data structure. This choice is made because the text entity is multidimensional and multifaceted, even if its sequential presentation constrains it. In particular, editions of South Asian texts of the Śivadharma corpus, the case study of this research, contain a series of phenomena that are difficult to manage formally, such as overlapping hierarchies. Hence, it becomes necessary to establish the data structure best suited to represent this complexity. In Śivadharma Database, the textus is an HTML file readily displayable. Textual fragments, annotated via an interface without requiring philologists to write code and saved in the backend, form the atomic unit of multiple relationships organised in a graph database. This approach enables the formal representation of complex and overlapping textual phenomena, allowing for good annotation expressiveness with minimal effort to learn the relevant technologies during the editing workflow.