6 resultados para Weak Compact Generating
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
The Italian radio telescopes currently undergo a major upgrade period in response to the growing demand for deep radio observations, such as surveys on large sky areas or observations of vast samples of compact radio sources. The optimised employment of the Italian antennas, at first constructed mainly for VLBI activities and provided with a control system (FS – Field System) not tailored to single-dish observations, required important modifications in particular of the guiding software and data acquisition system. The production of a completely new control system called ESCS (Enhanced Single-dish Control System) for the Medicina dish started in 2007, in synergy with the software development for the forthcoming Sardinia Radio Telescope (SRT). The aim is to produce a system optimised for single-dish observations in continuum, spectrometry and polarimetry. ESCS is also planned to be installed at the Noto site. A substantial part of this thesis work consisted in designing and developing subsystems within ESCS, in order to provide this software with tools to carry out large maps, spanning from the implementation of On-The-Fly fast scans (following both conventional and innovative observing strategies) to the production of single-dish standard output files and the realisation of tools for the quick-look of the acquired data. The test period coincided with the commissioning phase for two devices temporarily installed – while waiting for the SRT to be completed – on the Medicina antenna: a 18-26 GHz 7-feed receiver and the 14-channel analogue backend developed for its use. It is worth stressing that it is the only K-band multi-feed receiver at present available worldwide. The commissioning of the overall hardware/software system constituted a considerable section of the thesis work. Tests were led in order to verify the system stability and its capabilities, down to sensitivity levels which had never been reached in Medicina using the previous observing techniques and hardware devices. The aim was also to assess the scientific potential of the multi-feed receiver for the production of wide maps, exploiting its temporary availability on a mid-sized antenna. Dishes like the 32-m antennas at Medicina and Noto, in fact, offer the best conditions for large-area surveys, especially at high frequencies, as they provide a suited compromise between sufficiently large beam sizes to cover quickly large areas of the sky (typical of small-sized telescopes) and sensitivity (typical of large-sized telescopes). The KNoWS (K-band Northern Wide Survey) project is aimed at the realisation of a full-northern-sky survey at 21 GHz; its pilot observations, performed using the new ESCS tools and a peculiar observing strategy, constituted an ideal test-bed for ESCS itself and for the multi-feed/backend system. The KNoWS group, which I am part of, supported the commissioning activities also providing map-making and source-extraction tools, in order to complete the necessary data reduction pipeline and assess the general system scientific capabilities. The K-band observations, which were carried out in several sessions along the December 2008-March 2010 period, were accompanied by the realisation of a 5 GHz test survey during the summertime, which is not suitable for high-frequency observations. This activity was conceived in order to check the new analogue backend separately from the multi-feed receiver, and to simultaneously produce original scientific data (the 6-cm Medicina Survey, 6MS, a polar cap survey to complete PMN-GB6 and provide an all-sky coverage at 5 GHz).
Resumo:
Weak lensing experiments such as the future ESA-accepted mission Euclid aim to measure cosmological parameters with unprecedented accuracy. It is important to assess the precision that can be obtained in these measurements by applying analysis software on mock images that contain many sources of noise present in the real data. In this Thesis, we show a method to perform simulations of observations, that produce realistic images of the sky according to characteristics of the instrument and of the survey. We then use these images to test the performances of the Euclid mission. In particular, we concentrate on the precision of the photometric redshift measurements, which are key data to perform cosmic shear tomography. We calculate the fraction of the total observed sample that must be discarded to reach the required level of precision, that is equal to 0.05(1+z) for a galaxy with measured redshift z, with different ancillary ground-based observations. The results highlight the importance of u-band observations, especially to discriminate between low (z < 0.5) and high (z ~ 3) redshifts, and the need for good observing sites, with seeing FWHM < 1. arcsec. We then construct an optimal filter to detect galaxy clusters through photometric catalogues of galaxies, and we test it on the COSMOS field, obtaining 27 lensing-confirmed detections. Applying this algorithm on mock Euclid data, we verify the possibility to detect clusters with mass above 10^14.2 solar masses with a low rate of false detections.
Resumo:
This thesis addresses the issue of generating texts in the style of an existing author, that also satisfy structural constraints imposed by the genre of the text. Although Markov processes are known to be suitable for representing style, they are difficult to control in order to satisfy non-local properties, such as structural constraints, that require long distance modeling. The framework of Constrained Markov Processes allows to precisely generate texts that are consistent with a corpus, while being controllable in terms of rhymes and meter. Controlled Markov processes consist in reformulating Markov processes in the context of constraint satisfaction. The thesis describes how to represent stylistic and structural properties in terms of constraints in this framework and how this approach can be used for the generation of lyrics in the style of 60 differents authors An evaluation of the desctibed method is provided by comparing it to both pure Markov and pure constraint-based approaches. Finally the thesis describes the implementation of an augmented text editor, called Perec. Perec is intended to improve creativity, by helping the user to write lyrics and poetry, exploiting the techniques presented so far.
Resumo:
Agriculture is still important for socio-economic development in rural areas of Bosnia, Montenegro and Serbia (BMS). However, for sustainable rural development rural economies should be diversified so attention should be paid also to off-farm and non-farm income-generating activities. Agricultural and rural development (ARD) processes and farm activity diversification initiatives should be well governed. The ultimate objective of this work is to explore linkages between ARD governance and rural livelihoods diversification in BMS. The thesis is based on an extended secondary data analysis and surveys. Questionnaires for ARD governance and coordination were sent via email to public, civil society and international organizations. Concerning rural livelihood diversification, the field questionnaire surveys were carried out in three rural regions of BMS. Results show that local rural livelihoods are increasingly diversified but a significant share of households are still engaged in agriculture. Diversification strategies have a chance to succeed taking into consideration the three rural regions’ assets. However, rural households have to tackle many problems for developing new income-generating activities such as the lack of financial resources. Weak business skills are also a limiting factor. Fully exploiting rural economy diversification potential in BMS requires many interventions including improving rural governance, enhancing service delivery in rural areas, upgrading rural people’s human capital, strengthening rural social capital and improving physical capital, access of the rural population to finance as well as creating a favourable and enabling legal and legislative environment fostering diversification. Governance and coordination of ARD policy design, implementation and evaluation is still challenging in the three Balkan countries and this has repercussions also on the pace of rural livelihoods diversification. Therefore, there is a strong and urgent need for mobilization of all rural stakeholders and actors through appropriate governance arrangements in order to foster rural livelihoods diversification and quality of life improvement.