3 resultados para Water-adsorption

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

More efficient water treatment technologies would decrease the water bodies’ pollution and the actual intake of water resource. The aim of this thesis is an in-depth analysis of the magnetic separation of pollutants from water by means of a continuous-flow magnetic filter subjected to a field gradient produced by permanent magnets. This technique has the potential to improve times and efficiencies of both urban wastewater treatment plants and drinking water treatment plants. It might also substitute industrial wastewater treatments. This technique combines a physico-chemical phase of adsorption and a magnetic phase of filtration, having the potential to bond magnetite with any conventional adsorbent powder. The removal of both Magnetic Activated Carbons (MACs) and zeolite-magnetite mix with the addition of a coagulant was investigated. Adsorption tests of different pollutants (surfactants, endocrine disruptors, Fe(III), Mn(II), Ca(II)) on these adsorbents were also performed achieving good results. The numerical results concerning the adsorbent removals well reproduced the experimental ones obtained from two different experimental setups. In real situations the treatable flow rates are up to 90 m3/h (2000 m3/d).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern world suffers from an intense water crisis. Emerging contaminants represent one of the most concerning elements of this issue. Substances, molecules, ions, and microorganisms take part in this vast and variegated class of pollutants, which main characteristic is to be highly resistant to traditional water purification technologies. An intense international research effort is being carried out in order to find new and innovative solutions to this problem, and graphene-based materials are one of the most promising options. Graphene oxide (GO) is a nanostructured material where domains populated by oxygenated groups alternate with interconnected areas of sp2 hybridized carbon atoms, on the surface of a one-atom thick nanosheets. GO can adsorb a great number of molecules and ions on its surface, thanks to the variety of different interactions that it can express, such as hydrogen bonding, p-p stacking, and electrostatic and hydrophobic interaction. These characteristics, added to the high superficial area, make it an optimal material for the development of innovative materials for drinking water remediation. The main concern in the use of GO in this field is to avoid secondary contaminations (i.e. GO itself must not become a pollutant). This issue can be faced through the immobilization of GO onto polymeric substrates, thus developing composite materials. The use of micro/ultrafiltration polymeric hollow fibers as substrates allows the design of adsorptive membranes, meaning devices that can perform filtration and adsorption simultaneously. In this thesis, two strategies for the development of adsorptive membranes were investigated: a core-shell strategy, where hollow fibers are coated with GO, and a coextrusion strategy, where GO is embedded in the polymeric matrix of the fibers. The so-obtained devices were exploited for both fundamental studies (i.e. molecular and ionic behaviour in between GO nanosheets) and real applications (the coextruded material is now at TRL 9).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollution of water bodies is one of the most common environmental problems today. Organic pollutants are one of the main drawbacks in this natural resource, among which the following stand out long-lived dyes, pharmaceuticals, and pesticides. This research aims at obtaining nanocomposites based on polycaprolactone-chitosan (PCL-CS) electrospun nanofibers (NFs) containing TiO2 nanoparticles (NPs) for the adsorption and photocatalytic degradation of organic pollutants, using Rhodamine B as a model. The fabricated hybrid materials were characterized by FT-IR, TGA, DSC, SEM, TEM, tensile properties, and the contact angle of water drops. The photoactivity of the NFs was investigated using a batch-type system by following UV-Vis absorbance and fluorescence of rhodamine B (RhB). For this purpose, TiO2NPs were successfully ex-situ incorporated into the polymer matrix promoting good mechanical properties and higher hydrophilicity of the material. The results showed that CS in the NFs increased the absorption and degradation of RhB by the TiO2NPs. CS attracted the pollutant molecules to the active sites vicinity of TiO2NPs, favoring initial adsorption and degradation. In other words, a bait-hook-and-destroy effect was evidenced. It also was demonstrated that the sensitization of TiO2 by organic dyes (e.g., perylene derivative) considerably improves the photocatalytic activity under visible radiation, allowing the use of low amounts of TiO2. (≈0.05 g/1 g of fiber). Hence, the current study is expected to contribute with an environmentally friendly green alternative solution.